ardupilot/libraries/AP_InertialSensor/AP_InertialSensor.h

407 lines
15 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AP_INERTIAL_SENSOR_H__
#define __AP_INERTIAL_SENSOR_H__
// Gyro and Accelerometer calibration criteria
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f
#define AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS (15.5f*GRAVITY_MSS) // accelerometer values over 15.5G are recorded as a clipping error
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ 5.0f // accel vibration floor filter hz
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ 2.0f // accel vibration filter hz
/**
maximum number of INS instances available on this platform. If more
than 1 then redundant sensors may be available
*/
#define INS_MAX_INSTANCES 3
#define INS_MAX_BACKENDS 6
#define INS_VIBRATION_CHECK_INSTANCES 2
#include <stdint.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_InertialSensor_UserInteract.h"
#include <Filter/LowPassFilter.h>
#include <Filter/LowPassFilter2p.h>
class AP_InertialSensor_Backend;
class AuxiliaryBus;
/*
forward declare DataFlash class. We can't include DataFlash.h
because of mutual dependencies
*/
class DataFlash_Class;
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units.
*
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
*/
class AP_InertialSensor
{
friend class AP_InertialSensor_Backend;
public:
AP_InertialSensor();
static AP_InertialSensor *get_instance();
// the rate that updates will be available to the application
enum Sample_rate {
RATE_50HZ = 50,
RATE_100HZ = 100,
RATE_200HZ = 200,
RATE_400HZ = 400
};
enum Gyro_Calibration_Timing {
GYRO_CAL_NEVER = 0,
GYRO_CAL_STARTUP_ONLY = 1
};
/// Perform startup initialisation.
///
/// Called to initialise the state of the IMU.
///
/// Gyros will be calibrated unless INS_GYRO_CAL is zero
///
/// @param style The initialisation startup style.
///
void init(Sample_rate sample_rate);
/// Register a new gyro/accel driver, allocating an instance
/// number
uint8_t register_gyro(uint16_t raw_sample_rate_hz);
uint8_t register_accel(uint16_t raw_sample_rate_hz);
// perform accelerometer calibration including providing user instructions
// and feedback
bool calibrate_accel(AP_InertialSensor_UserInteract *interact,
float& trim_roll,
float& trim_pitch);
bool calibrate_trim(float &trim_roll, float &trim_pitch);
/// calibrating - returns true if the gyros or accels are currently being calibrated
bool calibrating() const { return _calibrating; }
/// Perform cold-start initialisation for just the gyros.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
void init_gyro(void);
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; }
const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); }
// set gyro offsets in radians/sec
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; }
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); }
//get delta angle if available
bool get_delta_angle(uint8_t i, Vector3f &delta_angle) const;
bool get_delta_angle(Vector3f &delta_angle) const { return get_delta_angle(_primary_gyro, delta_angle); }
//get delta velocity if available
bool get_delta_velocity(uint8_t i, Vector3f &delta_velocity) const;
bool get_delta_velocity(Vector3f &delta_velocity) const { return get_delta_velocity(_primary_accel, delta_velocity); }
float get_delta_velocity_dt(uint8_t i) const;
float get_delta_velocity_dt() const { return get_delta_velocity_dt(_primary_accel); }
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; }
const Vector3f &get_accel(void) const { return get_accel(_primary_accel); }
uint32_t get_gyro_error_count(uint8_t i) const { return _gyro_error_count[i]; }
uint32_t get_accel_error_count(uint8_t i) const { return _accel_error_count[i]; }
// multi-device interface
bool get_gyro_health(uint8_t instance) const { return (instance<_gyro_count) ? _gyro_healthy[instance] : false; }
bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); }
bool get_gyro_health_all(void) const;
uint8_t get_gyro_count(void) const { return _gyro_count; }
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; }
bool gyro_calibrated_ok_all() const;
bool use_gyro(uint8_t instance) const;
Gyro_Calibration_Timing gyro_calibration_timing() { return (Gyro_Calibration_Timing)_gyro_cal_timing.get(); }
bool get_accel_health(uint8_t instance) const { return (instance<_accel_count) ? _accel_healthy[instance] : false; }
bool get_accel_health(void) const { return get_accel_health(_primary_accel); }
bool get_accel_health_all(void) const;
uint8_t get_accel_count(void) const { return _accel_count; };
bool accel_calibrated_ok_all() const;
bool use_accel(uint8_t instance) const;
// get accel offsets in m/s/s
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; }
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); }
// get accel scale
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; }
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); }
// return the temperature if supported. Zero is returned if no
// temperature is available
float get_temperature(uint8_t instance) const { return _temperature[instance]; }
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
float get_delta_time() const { return _delta_time; }
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); }
// update gyro and accel values from accumulated samples
void update(void);
// wait for a sample to be available
void wait_for_sample(void);
// class level parameters
static const struct AP_Param::GroupInfo var_info[];
// set overall board orientation
void set_board_orientation(enum Rotation orientation) {
_board_orientation = orientation;
}
// return the selected sample rate
Sample_rate get_sample_rate(void) const { return _sample_rate; }
uint16_t error_count(void) const { return 0; }
bool healthy(void) const { return get_gyro_health() && get_accel_health(); }
uint8_t get_primary_accel(void) const { return _primary_accel; }
uint8_t get_primary_gyro(void) const { return _primary_gyro; }
// enable HIL mode
void set_hil_mode(void) { _hil_mode = true; }
// get the gyro filter rate in Hz
uint8_t get_gyro_filter_hz(void) const { return _gyro_filter_cutoff; }
// get the accel filter rate in Hz
uint8_t get_accel_filter_hz(void) const { return _accel_filter_cutoff; }
// pass in a pointer to DataFlash for raw data logging
void set_dataflash(DataFlash_Class *dataflash) { _dataflash = dataflash; }
// enable/disable raw gyro/accel logging
void set_raw_logging(bool enable) { _log_raw_data = enable; }
// calculate vibration levels and check for accelerometer clipping (called by a backends)
void calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt);
// retrieve latest calculated vibration levels
Vector3f get_vibration_levels() const { return get_vibration_levels(_primary_accel); }
Vector3f get_vibration_levels(uint8_t instance) const;
// retrieve and clear accelerometer clipping count
uint32_t get_accel_clip_count(uint8_t instance) const;
// check for vibration movement. True when all axis show nearly zero movement
bool is_still();
/*
HIL set functions. The minimum for HIL is set_accel() and
set_gyro(). The others are option for higher fidelity log
playback
*/
void set_accel(uint8_t instance, const Vector3f &accel);
void set_gyro(uint8_t instance, const Vector3f &gyro);
void set_delta_time(float delta_time);
void set_delta_velocity(uint8_t instance, float deltavt, const Vector3f &deltav);
void set_delta_angle(uint8_t instance, const Vector3f &deltaa);
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id) { return get_auxiliary_bus(backend_id, 0); }
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id, uint8_t instance);
void detect_backends(void);
private:
// load backend drivers
void _add_backend(AP_InertialSensor_Backend *backend);
void _start_backends();
AP_InertialSensor_Backend *_find_backend(int16_t backend_id, uint8_t instance);
// gyro initialisation
void _init_gyro();
// Calibration routines borrowed from Rolfe Schmidt
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
// _calibrate_accel - perform low level accel calibration
bool _calibrate_accel(const Vector3f accel_sample[6],
Vector3f& accel_offsets,
Vector3f& accel_scale,
float max_abs_offsets,
enum Rotation rotation);
bool _check_sample_range(const Vector3f accel_sample[6], enum Rotation rotation,
AP_InertialSensor_UserInteract* interact);
void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]);
void _calibrate_reset_matrices(float dS[6], float JS[6][6]);
void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]);
bool _calculate_trim(const Vector3f &accel_sample, float& trim_roll, float& trim_pitch);
// save parameters to eeprom
void _save_parameters();
// backend objects
AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS];
// number of gyros and accel drivers. Note that most backends
// provide both accel and gyro data, so will increment both
// counters on initialisation
uint8_t _gyro_count;
uint8_t _accel_count;
uint8_t _backend_count;
// the selected sample rate
Sample_rate _sample_rate;
// Most recent accelerometer reading
Vector3f _accel[INS_MAX_INSTANCES];
Vector3f _delta_velocity[INS_MAX_INSTANCES];
float _delta_velocity_dt[INS_MAX_INSTANCES];
bool _delta_velocity_valid[INS_MAX_INSTANCES];
// delta velocity accumulator
Vector3f _delta_velocity_acc[INS_MAX_INSTANCES];
// time accumulator for delta velocity accumulator
float _delta_velocity_acc_dt[INS_MAX_INSTANCES];
// Low Pass filters for gyro and accel
LowPassFilter2pVector3f _accel_filter[INS_MAX_INSTANCES];
LowPassFilter2pVector3f _gyro_filter[INS_MAX_INSTANCES];
Vector3f _accel_filtered[INS_MAX_INSTANCES];
Vector3f _gyro_filtered[INS_MAX_INSTANCES];
bool _new_accel_data[INS_MAX_INSTANCES];
bool _new_gyro_data[INS_MAX_INSTANCES];
// Most recent gyro reading
Vector3f _gyro[INS_MAX_INSTANCES];
Vector3f _delta_angle[INS_MAX_INSTANCES];
bool _delta_angle_valid[INS_MAX_INSTANCES];
Vector3f _delta_angle_acc[INS_MAX_INSTANCES];
Vector3f _last_delta_angle[INS_MAX_INSTANCES];
Vector3f _last_raw_gyro[INS_MAX_INSTANCES];
// product id
AP_Int16 _product_id;
// accelerometer scaling and offsets
AP_Vector3f _accel_scale[INS_MAX_INSTANCES];
AP_Vector3f _accel_offset[INS_MAX_INSTANCES];
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES];
// accelerometer max absolute offsets to be used for calibration
float _accel_max_abs_offsets[INS_MAX_INSTANCES];
// accelerometer and gyro raw sample rate in units of Hz
uint16_t _accel_raw_sample_rates[INS_MAX_INSTANCES];
uint16_t _gyro_raw_sample_rates[INS_MAX_INSTANCES];
// temperatures for an instance if available
float _temperature[INS_MAX_INSTANCES];
// filtering frequency (0 means default)
AP_Int8 _accel_filter_cutoff;
AP_Int8 _gyro_filter_cutoff;
AP_Int8 _gyro_cal_timing;
// use for attitude, velocity, position estimates
AP_Int8 _use[INS_MAX_INSTANCES];
// board orientation from AHRS
enum Rotation _board_orientation;
// calibrated_ok flags
bool _gyro_cal_ok[INS_MAX_INSTANCES];
// primary accel and gyro
uint8_t _primary_gyro;
uint8_t _primary_accel;
// has wait_for_sample() found a sample?
bool _have_sample:1;
// are we in HIL mode?
bool _hil_mode:1;
// are gyros or accels currently being calibrated
bool _calibrating:1;
// should we log raw accel/gyro data?
bool _log_raw_data:1;
bool _backends_detected:1;
// the delta time in seconds for the last sample
float _delta_time;
// last time a wait_for_sample() returned a sample
uint32_t _last_sample_usec;
// target time for next wait_for_sample() return
uint32_t _next_sample_usec;
// time between samples in microseconds
uint32_t _sample_period_usec;
// health of gyros and accels
bool _gyro_healthy[INS_MAX_INSTANCES];
bool _accel_healthy[INS_MAX_INSTANCES];
uint32_t _accel_error_count[INS_MAX_INSTANCES];
uint32_t _gyro_error_count[INS_MAX_INSTANCES];
// vibration and clipping
uint32_t _accel_clip_count[INS_MAX_INSTANCES];
LowPassFilterVector3f _accel_vibe_floor_filter[INS_VIBRATION_CHECK_INSTANCES];
LowPassFilterVector3f _accel_vibe_filter[INS_VIBRATION_CHECK_INSTANCES];
// threshold for detecting stillness
AP_Float _still_threshold;
/*
state for HIL support
*/
struct {
float delta_time;
} _hil {};
DataFlash_Class *_dataflash;
static AP_InertialSensor *_s_instance;
};
#include "AP_InertialSensor_Backend.h"
#include "AP_InertialSensor_MPU6000.h"
#include "AP_InertialSensor_PX4.h"
#include "AP_InertialSensor_MPU9250.h"
#include "AP_InertialSensor_L3G4200D.h"
#include "AP_InertialSensor_Flymaple.h"
#include "AP_InertialSensor_MPU9150.h"
#include "AP_InertialSensor_LSM9DS0.h"
#include "AP_InertialSensor_HIL.h"
#include "AP_InertialSensor_SITL.h"
#include "AP_InertialSensor_qflight.h"
#include "AP_InertialSensor_UserInteract_Stream.h"
#include "AP_InertialSensor_UserInteract_MAVLink.h"
#endif // __AP_INERTIAL_SENSOR_H__