ardupilot/libraries/AP_GPS/AP_GPS_SIRF.cpp

248 lines
6.8 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
//
// SiRF Binary GPS driver for ArduPilot and ArduPilotMega.
// Code by Michael Smith.
//
// This library is free software; you can redistribute it and / or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
#include "AP_GPS_SIRF.h"
#include <stdint.h>
// Initialisation messages
//
// Turn off all messages except for 0x29.
//
// XXX the bytes show up on the wire, but at least my test unit (EM-411) seems to ignore them.
//
static uint8_t init_messages[] = {
0xa0, 0xa2, 0x00, 0x08, 0xa6, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa8, 0xb0, 0xb3,
0xa0, 0xa2, 0x00, 0x08, 0xa6, 0x00, 0x29, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd0, 0xb0, 0xb3
};
// Public Methods //////////////////////////////////////////////////////////////
void
AP_GPS_SIRF::init(AP_HAL::UARTDriver *s, enum GPS_Engine_Setting nav_setting)
{
_port = s;
_port->flush();
// For modules that default to something other than SiRF binary,
// the module-specific subclass should take care of switching to binary mode
// before calling us.
// send SiRF binary setup messages
_port->write(init_messages, sizeof(init_messages));
idleTimeout = 1200;
}
// Process bytes available from the stream
//
// The stream is assumed to contain only messages we recognise. If it
// contains other messages, and those messages contain the preamble
// bytes, it is possible for this code to fail to synchronise to the
// stream immediately. Without buffering the entire message and
// re-processing it from the top, this is unavoidable. The parser
// attempts to avoid this when possible.
//
bool
AP_GPS_SIRF::read(void)
{
uint8_t data;
int16_t numc;
bool parsed = false;
numc = _port->available();
while(numc--) {
// read the next byte
data = _port->read();
switch(_step) {
// Message preamble detection
//
// If we fail to match any of the expected bytes, we reset
// the state machine and re-consider the failed byte as
// the first byte of the preamble. This improves our
// chances of recovering from a mismatch and makes it less
// likely that we will be fooled by the preamble appearing
// as data in some other message.
//
case 1:
if (PREAMBLE2 == data) {
_step++;
break;
}
_step = 0;
// FALLTHROUGH
case 0:
if(PREAMBLE1 == data)
_step++;
break;
// Message length
//
// We always collect the length so that we can avoid being
// fooled by preamble bytes in messages.
//
case 2:
_step++;
_payload_length = (uint16_t)data << 8;
break;
case 3:
_step++;
_payload_length |= data;
_payload_counter = 0;
_checksum = 0;
break;
// Message header processing
//
// We sniff the message ID to determine whether we are going
// to gather the message bytes or just discard them.
//
case 4:
_step++;
_accumulate(data);
_payload_length--;
_gather = false;
switch(data) {
case MSG_GEONAV:
if (_payload_length == sizeof(sirf_geonav)) {
_gather = true;
_msg_id = data;
}
break;
}
break;
// Receive message data
//
// Note that we are effectively guaranteed by the protocol
// that the checksum and postamble cannot be mistaken for
// the preamble, so if we are discarding bytes in this
// message when the payload is done we return directly
// to the preamble detector rather than bothering with
// the checksum logic.
//
case 5:
if (_gather) { // gather data if requested
_accumulate(data);
_buffer.bytes[_payload_counter] = data;
if (++_payload_counter == _payload_length)
_step++;
} else {
if (++_payload_counter == _payload_length)
_step = 0;
}
break;
// Checksum and message processing
//
case 6:
_step++;
if ((_checksum >> 8) != data) {
_error("GPS_SIRF: checksum error\n");
_step = 0;
}
break;
case 7:
_step = 0;
if ((_checksum & 0xff) != data) {
_error("GPS_SIRF: checksum error\n");
break;
}
if (_gather) {
parsed = _parse_gps(); // Parse the new GPS packet
}
}
}
return(parsed);
}
bool
AP_GPS_SIRF::_parse_gps(void)
{
switch(_msg_id) {
case MSG_GEONAV:
time = _swapl(&_buffer.nav.time);
//fix = (0 == _buffer.nav.fix_invalid) && (FIX_3D == (_buffer.nav.fix_type & FIX_MASK));
fix = (0 == _buffer.nav.fix_invalid);
latitude = _swapl(&_buffer.nav.latitude);
longitude = _swapl(&_buffer.nav.longitude);
altitude = _swapl(&_buffer.nav.altitude_msl);
ground_speed = _swapi(&_buffer.nav.ground_speed);
// at low speeds, ground course wanders wildly; suppress changes if we are not moving
if (ground_speed > 50)
ground_course = _swapi(&_buffer.nav.ground_course);
num_sats = _buffer.nav.satellites;
return true;
}
return false;
}
void
AP_GPS_SIRF::_accumulate(uint8_t val)
{
_checksum = (_checksum + val) & 0x7fff;
}
/*
detect a SIRF GPS
*/
bool
AP_GPS_SIRF::_detect(uint8_t data)
{
static uint16_t checksum;
static uint8_t step, payload_length, payload_counter;
switch (step) {
case 1:
if (PREAMBLE2 == data) {
step++;
break;
}
step = 0;
case 0:
payload_length = payload_counter = checksum = 0;
if (PREAMBLE1 == data)
step++;
break;
case 2:
step++;
if (data != 0) {
// only look for short messages
step = 0;
}
break;
case 3:
step++;
payload_length = data;
break;
case 4:
checksum = (checksum + data) & 0x7fff;
if (++payload_counter == payload_length)
step++;
break;
case 5:
step++;
if ((checksum >> 8) != data) {
step = 0;
}
break;
case 6:
step = 0;
if ((checksum & 0xff) == data) {
return true;
}
}
return false;
}