mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-16 05:38:28 -04:00
eca1417858
- Guard I2C transactions with this semaphore in the MS5611 and HMC5843 drivers.
413 lines
12 KiB
C++
413 lines
12 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
/*
|
||
* APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor
|
||
* Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* Sensor is conected to standard SPI port
|
||
* Chip Select pin: Analog2 (provisional until Jordi defines the pin)!!
|
||
*
|
||
* Variables:
|
||
* Temp : Calculated temperature (in Celsius degrees * 100)
|
||
* Press : Calculated pressure (in mbar units * 100)
|
||
*
|
||
*
|
||
* Methods:
|
||
* init() : Initialization and sensor reset
|
||
* read() : Read sensor data and _calculate Temperature, Pressure
|
||
* This function is optimized so the main host don´t need to wait
|
||
* You can call this function in your main loop
|
||
* Maximum data output frequency 100Hz - this allows maximum oversampling in the chip ADC
|
||
* It returns a 1 if there are new data.
|
||
* get_pressure() : return pressure in mbar*100 units
|
||
* get_temperature() : return temperature in celsius degrees*100 units
|
||
*
|
||
* Internal functions:
|
||
* _calculate() : Calculate Temperature and Pressure (temperature compensated) in real units
|
||
*
|
||
*
|
||
*/
|
||
|
||
#include <AP_HAL.h>
|
||
#include "AP_Baro_MS5611.h"
|
||
|
||
extern const AP_HAL::HAL& hal;
|
||
|
||
#define CMD_MS5611_RESET 0x1E
|
||
#define CMD_MS5611_PROM_Setup 0xA0
|
||
#define CMD_MS5611_PROM_C1 0xA2
|
||
#define CMD_MS5611_PROM_C2 0xA4
|
||
#define CMD_MS5611_PROM_C3 0xA6
|
||
#define CMD_MS5611_PROM_C4 0xA8
|
||
#define CMD_MS5611_PROM_C5 0xAA
|
||
#define CMD_MS5611_PROM_C6 0xAC
|
||
#define CMD_MS5611_PROM_CRC 0xAE
|
||
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling)
|
||
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling)
|
||
|
||
uint32_t volatile AP_Baro_MS5611::_s_D1;
|
||
uint32_t volatile AP_Baro_MS5611::_s_D2;
|
||
uint8_t volatile AP_Baro_MS5611::_d1_count;
|
||
uint8_t volatile AP_Baro_MS5611::_d2_count;
|
||
uint8_t AP_Baro_MS5611::_state;
|
||
uint32_t AP_Baro_MS5611::_timer;
|
||
bool volatile AP_Baro_MS5611::_updated;
|
||
|
||
AP_Baro_MS5611_Serial* AP_Baro_MS5611::_serial = NULL;
|
||
AP_Baro_MS5611_SPI AP_Baro_MS5611::spi;
|
||
AP_Baro_MS5611_I2C AP_Baro_MS5611::i2c;
|
||
|
||
// SPI Device //////////////////////////////////////////////////////////////////
|
||
|
||
void AP_Baro_MS5611_SPI::init()
|
||
{
|
||
_spi = hal.spi->device(AP_HAL::SPIDevice_MS5611);
|
||
if (_spi == NULL) {
|
||
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get "
|
||
"valid SPI device driver!"));
|
||
return; /* never reached */
|
||
}
|
||
_spi_sem = _spi->get_semaphore();
|
||
if (_spi_sem == NULL) {
|
||
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get "
|
||
"valid SPI semaphroe!"));
|
||
return; /* never reached */
|
||
|
||
}
|
||
}
|
||
|
||
uint16_t AP_Baro_MS5611_SPI::read_16bits(uint8_t reg)
|
||
{
|
||
uint8_t tx[3];
|
||
uint8_t rx[3];
|
||
tx[0] = reg; tx[1] = 0; tx[2] = 0;
|
||
_spi->transaction(tx, rx, 3);
|
||
return ((uint16_t) rx[1] << 8 ) | ( rx[2] );
|
||
}
|
||
|
||
uint32_t AP_Baro_MS5611_SPI::read_adc()
|
||
{
|
||
uint8_t tx[4];
|
||
uint8_t rx[4];
|
||
memset(tx, 0, 4); /* first byte is addr = 0 */
|
||
_spi->transaction(tx, rx, 4);
|
||
return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]);
|
||
}
|
||
|
||
|
||
void AP_Baro_MS5611_SPI::write(uint8_t reg)
|
||
{
|
||
uint8_t tx[1];
|
||
tx[0] = reg;
|
||
_spi->transaction(tx, NULL, 1);
|
||
}
|
||
|
||
bool AP_Baro_MS5611_SPI::sem_take_blocking() {
|
||
return _spi_sem->take(10);
|
||
}
|
||
|
||
bool AP_Baro_MS5611_SPI::sem_take_nonblocking()
|
||
{
|
||
/**
|
||
* Take nonblocking from a TimerProcess context &
|
||
* monitor for bad failures
|
||
*/
|
||
static int semfail_ctr = 0;
|
||
bool got = _spi_sem->take_nonblocking();
|
||
if (!got) {
|
||
semfail_ctr++;
|
||
if (semfail_ctr > 100) {
|
||
hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem "
|
||
"100 times in a row, in AP_Baro_MS5611::_update"));
|
||
}
|
||
return false; /* never reached */
|
||
} else {
|
||
semfail_ctr = 0;
|
||
}
|
||
return got;
|
||
}
|
||
|
||
void AP_Baro_MS5611_SPI::sem_give()
|
||
{
|
||
_spi_sem->give();
|
||
}
|
||
|
||
// I2C Device //////////////////////////////////////////////////////////////////
|
||
|
||
/** I2C address of the MS5611 on the PX4 board. */
|
||
#define MS5611_ADDR 0x76
|
||
|
||
void AP_Baro_MS5611_I2C::init()
|
||
{
|
||
_i2c_sem = hal.i2c->get_semaphore();
|
||
if (_i2c_sem == NULL) {
|
||
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get "
|
||
"valid I2C semaphroe!"));
|
||
return; /* never reached */
|
||
}
|
||
}
|
||
|
||
uint16_t AP_Baro_MS5611_I2C::read_16bits(uint8_t reg)
|
||
{
|
||
uint8_t buf[2];
|
||
|
||
if (hal.i2c->readRegisters(MS5611_ADDR, reg, sizeof(buf), buf) == 0)
|
||
return (((uint16_t)(buf[0]) << 8) | buf[1]);
|
||
|
||
return 0;
|
||
}
|
||
|
||
uint32_t AP_Baro_MS5611_I2C::read_adc()
|
||
{
|
||
uint8_t buf[3];
|
||
|
||
if (hal.i2c->readRegisters(MS5611_ADDR, 0x00, sizeof(buf), buf) == 0)
|
||
return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2];
|
||
|
||
return 0;
|
||
}
|
||
|
||
void AP_Baro_MS5611_I2C::write(uint8_t reg)
|
||
{
|
||
hal.i2c->write(MS5611_ADDR, 1, ®);
|
||
}
|
||
|
||
bool AP_Baro_MS5611_I2C::sem_take_blocking() {
|
||
return _i2c_sem->take(10);
|
||
}
|
||
|
||
bool AP_Baro_MS5611_I2C::sem_take_nonblocking()
|
||
{
|
||
/**
|
||
* Take nonblocking from a TimerProcess context &
|
||
* monitor for bad failures
|
||
*/
|
||
static int semfail_ctr = 0;
|
||
bool got = _i2c_sem->take_nonblocking();
|
||
if (!got) {
|
||
semfail_ctr++;
|
||
if (semfail_ctr > 100) {
|
||
hal.scheduler->panic(PSTR("PANIC: failed to take _i2c_sem "
|
||
"100 times in a row, in AP_Baro_MS5611::_update"));
|
||
}
|
||
return false; /* never reached */
|
||
} else {
|
||
semfail_ctr = 0;
|
||
}
|
||
return got;
|
||
}
|
||
|
||
void AP_Baro_MS5611_I2C::sem_give()
|
||
{
|
||
_i2c_sem->give();
|
||
}
|
||
|
||
// Public Methods //////////////////////////////////////////////////////////////
|
||
|
||
// SPI should be initialized externally
|
||
bool AP_Baro_MS5611::init()
|
||
{
|
||
if (_serial == NULL) {
|
||
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: NULL serial driver"));
|
||
return false; /* never reached */
|
||
}
|
||
|
||
_serial->init();
|
||
if (!_serial->sem_take_blocking()){
|
||
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: failed to take "
|
||
"serial semaphore for init"));
|
||
return false; /* never reached */
|
||
}
|
||
|
||
_serial->write(CMD_MS5611_RESET);
|
||
hal.scheduler->delay(4);
|
||
|
||
// We read the factory calibration
|
||
// The on-chip CRC is not used
|
||
C1 = _serial->read_16bits(CMD_MS5611_PROM_C1);
|
||
C2 = _serial->read_16bits(CMD_MS5611_PROM_C2);
|
||
C3 = _serial->read_16bits(CMD_MS5611_PROM_C3);
|
||
C4 = _serial->read_16bits(CMD_MS5611_PROM_C4);
|
||
C5 = _serial->read_16bits(CMD_MS5611_PROM_C5);
|
||
C6 = _serial->read_16bits(CMD_MS5611_PROM_C6);
|
||
|
||
|
||
//Send a command to read Temp first
|
||
_serial->write(CMD_CONVERT_D2_OSR4096);
|
||
_timer = hal.scheduler->micros();
|
||
_state = 0;
|
||
Temp=0;
|
||
Press=0;
|
||
|
||
_s_D1 = 0;
|
||
_s_D2 = 0;
|
||
_d1_count = 0;
|
||
_d2_count = 0;
|
||
|
||
hal.scheduler->register_timer_process( AP_Baro_MS5611::_update );
|
||
_serial->sem_give();
|
||
|
||
// wait for at least one value to be read
|
||
uint32_t tstart = hal.scheduler->millis();
|
||
while (!_updated) {
|
||
hal.scheduler->delay(10);
|
||
if (hal.scheduler->millis() - tstart > 1000) {
|
||
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 took more than "
|
||
"1000ms to initialize"));
|
||
healthy = false;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
healthy = true;
|
||
return true;
|
||
}
|
||
|
||
|
||
// Read the sensor. This is a state machine
|
||
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
|
||
// temperature does not change so quickly...
|
||
void AP_Baro_MS5611::_update(uint32_t tnow)
|
||
{
|
||
// Throttle read rate to 100hz maximum.
|
||
// note we use 9500us here not 10000us
|
||
// the read rate will end up at exactly 100hz because the Periodic Timer fires at 1khz
|
||
if (tnow - _timer < 9500) {
|
||
return;
|
||
}
|
||
|
||
_serial->sem_take_nonblocking();
|
||
_timer = tnow;
|
||
|
||
if (_state == 0) {
|
||
_s_D2 += _serial->read_adc();// On state 0 we read temp
|
||
_d2_count++;
|
||
if (_d2_count == 32) {
|
||
// we have summed 32 values. This only happens
|
||
// when we stop reading the barometer for a long time
|
||
// (more than 1.2 seconds)
|
||
_s_D2 >>= 1;
|
||
_d2_count = 16;
|
||
}
|
||
_state++;
|
||
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
|
||
} else {
|
||
_s_D1 += _serial->read_adc();
|
||
_d1_count++;
|
||
if (_d1_count == 128) {
|
||
// we have summed 128 values. This only happens
|
||
// when we stop reading the barometer for a long time
|
||
// (more than 1.2 seconds)
|
||
_s_D1 >>= 1;
|
||
_d1_count = 64;
|
||
}
|
||
_state++;
|
||
// Now a new reading exists
|
||
_updated = true;
|
||
if (_state == 5) {
|
||
_serial->write(CMD_CONVERT_D2_OSR4096); // Command to read temperature
|
||
_state = 0;
|
||
} else {
|
||
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
|
||
}
|
||
}
|
||
|
||
_serial->sem_give();
|
||
}
|
||
|
||
uint8_t AP_Baro_MS5611::read()
|
||
{
|
||
bool updated = _updated;
|
||
if (updated) {
|
||
uint32_t sD1, sD2;
|
||
uint8_t d1count, d2count;
|
||
|
||
// Suspend timer procs because these variables are written to
|
||
// in "_update".
|
||
hal.scheduler->suspend_timer_procs();
|
||
sD1 = _s_D1; _s_D1 = 0;
|
||
sD2 = _s_D2; _s_D2 = 0;
|
||
d1count = _d1_count; _d1_count = 0;
|
||
d2count = _d2_count; _d2_count = 0;
|
||
_updated = false;
|
||
hal.scheduler->resume_timer_procs();
|
||
|
||
if (d1count != 0) {
|
||
D1 = ((float)sD1) / d1count;
|
||
}
|
||
if (d2count != 0) {
|
||
D2 = ((float)sD2) / d2count;
|
||
}
|
||
_pressure_samples = d1count;
|
||
_raw_press = D1;
|
||
_raw_temp = D2;
|
||
}
|
||
_calculate();
|
||
if (updated) {
|
||
_last_update = hal.scheduler->millis();
|
||
}
|
||
return updated ? 1 : 0;
|
||
}
|
||
|
||
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
|
||
void AP_Baro_MS5611::_calculate()
|
||
{
|
||
float dT;
|
||
float TEMP;
|
||
float OFF;
|
||
float SENS;
|
||
float P;
|
||
|
||
// Formulas from manufacturer datasheet
|
||
// sub -20c temperature compensation is not included
|
||
|
||
// we do the calculations using floating point
|
||
// as this is much faster on an AVR2560, and also allows
|
||
// us to take advantage of the averaging of D1 and D1 over
|
||
// multiple samples, giving us more precision
|
||
dT = D2-(((uint32_t)C5)<<8);
|
||
TEMP = (dT * C6)/8388608;
|
||
OFF = C2 * 65536.0 + (C4 * dT) / 128;
|
||
SENS = C1 * 32768.0 + (C3 * dT) / 256;
|
||
|
||
if (TEMP < 0) {
|
||
// second order temperature compensation when under 20 degrees C
|
||
float T2 = (dT*dT) / 0x80000000;
|
||
float Aux = TEMP*TEMP;
|
||
float OFF2 = 2.5*Aux;
|
||
float SENS2 = 1.25*Aux;
|
||
TEMP = TEMP - T2;
|
||
OFF = OFF - OFF2;
|
||
SENS = SENS - SENS2;
|
||
}
|
||
|
||
P = (D1*SENS/2097152 - OFF)/32768;
|
||
Temp = TEMP + 2000;
|
||
Press = P;
|
||
}
|
||
|
||
float AP_Baro_MS5611::get_pressure()
|
||
{
|
||
return Press;
|
||
}
|
||
|
||
float AP_Baro_MS5611::get_temperature()
|
||
{
|
||
// callers want the temperature in 0.1C units
|
||
return Temp/10;
|
||
}
|
||
|
||
int32_t AP_Baro_MS5611::get_raw_pressure() {
|
||
return _raw_press;
|
||
}
|
||
|
||
int32_t AP_Baro_MS5611::get_raw_temp() {
|
||
return _raw_temp;
|
||
}
|
||
|
||
|