mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 10:58:30 -04:00
e2b0e07973
we only need to rotate vectors
171 lines
5.7 KiB
C++
171 lines
5.7 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
* matrix3.cpp
|
|
* Copyright (C) Andrew Tridgell 2012
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_Math.h"
|
|
|
|
#define HALF_SQRT_2 0.70710678118654757
|
|
|
|
// create a rotation matrix given some euler angles
|
|
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
|
|
template <typename T>
|
|
void Matrix3<T>::from_euler(float roll, float pitch, float yaw)
|
|
{
|
|
float cp = cosf(pitch);
|
|
float sp = sinf(pitch);
|
|
float sr = sinf(roll);
|
|
float cr = cosf(roll);
|
|
float sy = sinf(yaw);
|
|
float cy = cosf(yaw);
|
|
|
|
a.x = cp * cy;
|
|
a.y = (sr * sp * cy) - (cr * sy);
|
|
a.z = (cr * sp * cy) + (sr * sy);
|
|
b.x = cp * sy;
|
|
b.y = (sr * sp * sy) + (cr * cy);
|
|
b.z = (cr * sp * sy) - (sr * cy);
|
|
c.x = -sp;
|
|
c.y = sr * cp;
|
|
c.z = cr * cp;
|
|
}
|
|
|
|
// calculate euler angles from a rotation matrix
|
|
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
|
|
template <typename T>
|
|
void Matrix3<T>::to_euler(float *roll, float *pitch, float *yaw)
|
|
{
|
|
if (pitch != NULL) {
|
|
*pitch = -safe_asin(c.x);
|
|
}
|
|
if (roll != NULL) {
|
|
*roll = atan2f(c.y, c.z);
|
|
}
|
|
if (yaw != NULL) {
|
|
*yaw = atan2f(b.x, a.x);
|
|
}
|
|
}
|
|
|
|
// apply an additional rotation from a body frame gyro vector
|
|
// to a rotation matrix.
|
|
template <typename T>
|
|
void Matrix3<T>::rotate(const Vector3<T> &g)
|
|
{
|
|
Matrix3f temp_matrix;
|
|
temp_matrix.a.x = a.y * g.z - a.z * g.y;
|
|
temp_matrix.a.y = a.z * g.x - a.x * g.z;
|
|
temp_matrix.a.z = a.x * g.y - a.y * g.x;
|
|
temp_matrix.b.x = b.y * g.z - b.z * g.y;
|
|
temp_matrix.b.y = b.z * g.x - b.x * g.z;
|
|
temp_matrix.b.z = b.x * g.y - b.y * g.x;
|
|
temp_matrix.c.x = c.y * g.z - c.z * g.y;
|
|
temp_matrix.c.y = c.z * g.x - c.x * g.z;
|
|
temp_matrix.c.z = c.x * g.y - c.y * g.x;
|
|
|
|
(*this) += temp_matrix;
|
|
}
|
|
|
|
// apply an additional rotation from a body frame gyro vector
|
|
// to a rotation matrix.
|
|
template <typename T>
|
|
void Matrix3<T>::rotateXY(const Vector3<T> &g)
|
|
{
|
|
Matrix3f temp_matrix;
|
|
temp_matrix.a.x = -a.z * g.y;
|
|
temp_matrix.a.y = a.z * g.x;
|
|
temp_matrix.a.z = a.x * g.y - a.y * g.x;
|
|
temp_matrix.b.x = -b.z * g.y;
|
|
temp_matrix.b.y = b.z * g.x;
|
|
temp_matrix.b.z = b.x * g.y - b.y * g.x;
|
|
temp_matrix.c.x = -c.z * g.y;
|
|
temp_matrix.c.y = c.z * g.x;
|
|
temp_matrix.c.z = c.x * g.y - c.y * g.x;
|
|
|
|
(*this) += temp_matrix;
|
|
}
|
|
|
|
// multiplication by a vector
|
|
template <typename T>
|
|
Vector3<T> Matrix3<T>::operator *(const Vector3<T> &v) const
|
|
{
|
|
return Vector3<T>(a.x * v.x + a.y * v.y + a.z * v.z,
|
|
b.x * v.x + b.y * v.y + b.z * v.z,
|
|
c.x * v.x + c.y * v.y + c.z * v.z);
|
|
}
|
|
|
|
// multiplication by a vector, extracting only the xy components
|
|
template <typename T>
|
|
Vector2<T> Matrix3<T>::mulXY(const Vector3<T> &v) const
|
|
{
|
|
return Vector2<T>(a.x * v.x + a.y * v.y + a.z * v.z,
|
|
b.x * v.x + b.y * v.y + b.z * v.z);
|
|
}
|
|
|
|
// multiplication of transpose by a vector
|
|
template <typename T>
|
|
Vector3<T> Matrix3<T>::mul_transpose(const Vector3<T> &v) const
|
|
{
|
|
return Vector3<T>(a.x * v.x + b.x * v.y + c.x * v.z,
|
|
a.y * v.x + b.y * v.y + c.y * v.z,
|
|
a.z * v.x + b.z * v.y + c.z * v.z);
|
|
}
|
|
|
|
// multiplication by another Matrix3<T>
|
|
template <typename T>
|
|
Matrix3<T> Matrix3<T>::operator *(const Matrix3<T> &m) const
|
|
{
|
|
Matrix3<T> temp (Vector3<T>(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x,
|
|
a.x * m.a.y + a.y * m.b.y + a.z * m.c.y,
|
|
a.x * m.a.z + a.y * m.b.z + a.z * m.c.z),
|
|
Vector3<T>(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x,
|
|
b.x * m.a.y + b.y * m.b.y + b.z * m.c.y,
|
|
b.x * m.a.z + b.y * m.b.z + b.z * m.c.z),
|
|
Vector3<T>(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x,
|
|
c.x * m.a.y + c.y * m.b.y + c.z * m.c.y,
|
|
c.x * m.a.z + c.y * m.b.z + c.z * m.c.z));
|
|
return temp;
|
|
}
|
|
|
|
template <typename T>
|
|
Matrix3<T> Matrix3<T>::transposed(void) const
|
|
{
|
|
return Matrix3<T>(Vector3<T>(a.x, b.x, c.x),
|
|
Vector3<T>(a.y, b.y, c.y),
|
|
Vector3<T>(a.z, b.z, c.z));
|
|
}
|
|
|
|
template <typename T>
|
|
void Matrix3<T>::zero(void)
|
|
{
|
|
a.x = a.y = a.z = 0;
|
|
b.x = b.y = b.z = 0;
|
|
c.x = c.y = c.z = 0;
|
|
}
|
|
|
|
|
|
// only define for float
|
|
template void Matrix3<float>::zero(void);
|
|
template void Matrix3<float>::rotate(const Vector3<float> &g);
|
|
template void Matrix3<float>::rotateXY(const Vector3<float> &g);
|
|
template void Matrix3<float>::from_euler(float roll, float pitch, float yaw);
|
|
template void Matrix3<float>::to_euler(float *roll, float *pitch, float *yaw);
|
|
template Vector3<float> Matrix3<float>::operator *(const Vector3<float> &v) const;
|
|
template Vector3<float> Matrix3<float>::mul_transpose(const Vector3<float> &v) const;
|
|
template Matrix3<float> Matrix3<float>::operator *(const Matrix3<float> &m) const;
|
|
template Matrix3<float> Matrix3<float>::transposed(void) const;
|
|
template Vector2<float> Matrix3<float>::mulXY(const Vector3<float> &v) const;
|