ardupilot/ArduCopter/control_ofloiter.pde

169 lines
6.3 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* control_ofloiter.pde - init and run calls for of_loiter (optical flow loiter) flight mode
*/
#if OPTFLOW == ENABLED
#define OPTFLOW_ALT_MAX_CM 1500 // maximum altitude above home that optical flow sensor will be used
#define OPTFLOW_TIMEOUT_MS 200 // timeout in milliseconds after which we will give up on optical flow readings and return control to the pilot
#define OPTFLOW_RP_RATE_LIM (2000/MAIN_LOOP_RATE) // limit in centi-degrees/sec on rate of change of roll-pitch target. Equal to 20deg/sec
// ofloiter_init - initialise ofloiter controller
static bool ofloiter_init(bool ignore_checks)
{
if (optflow.enabled() || ignore_checks) {
// initialize vertical speed and acceleration
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
pos_control.set_accel_z(g.pilot_accel_z);
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
// initialise of_roll, pitch to current attitude
of_roll = ahrs.roll_sensor;
of_pitch = ahrs.pitch_sensor;
reset_optflow_I();
return true;
}else{
return false;
}
}
// ofloiter_run - runs the optical flow loiter controller
// should be called at 100hz or more
static void ofloiter_run()
{
int16_t target_roll, target_pitch;
float final_roll, final_pitch;
float target_yaw_rate = 0;
float target_climb_rate = 0;
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed) {
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
attitude_control.set_throttle_out(0, false);
pos_control.set_alt_target_to_current_alt();
of_roll = ahrs.roll_sensor;
of_pitch = ahrs.pitch_sensor;
reset_optflow_I();
return;
}
// process pilot inputs
if (!failsafe.radio) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch);
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
// check for pilot requested take-off
if (ap.land_complete && target_climb_rate > 0) {
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}
}
// when landed reset targets and output zero throttle
if (ap.land_complete) {
attitude_control.relax_bf_rate_controller();
attitude_control.set_yaw_target_to_current_heading();
// move throttle to between minimum and non-takeoff-throttle to keep us on the ground
attitude_control.set_throttle_out(get_throttle_pre_takeoff(g.rc_3.control_in), false);
pos_control.set_alt_target_to_current_alt();
of_roll = ahrs.roll_sensor;
of_pitch = ahrs.pitch_sensor;
}else{
// mix in user control with optical flow
get_of_roll_pitch(target_roll, target_pitch, final_roll, final_pitch);
// call attitude controller
attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(final_roll, final_pitch, target_yaw_rate, get_smoothing_gain());
// run altitude controller
if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) {
// if sonar is ok, use surface tracking
target_climb_rate = get_throttle_surface_tracking(target_climb_rate, pos_control.get_alt_target(), G_Dt);
}
// update altitude target and call position controller
pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt);
pos_control.update_z_controller();
}
}
// calculate modified roll/pitch depending upon optical flow calculated position
static void get_of_roll_pitch(int16_t input_roll, int16_t input_pitch, float &roll_out, float &pitch_out)
{
static uint32_t last_of_update = 0;
float dt;
Vector2f vel;
// To-Do: pass input_roll, input_pitch through to roll_out, pitch_out if input is non-zero or previous iteration was non-zero
// check if new optflow data available
if (optflow.last_update() != last_of_update) {
// calculate dt and sanity check
dt = (optflow.last_update() - last_of_update) / 1000.0f;
if (dt > 0.2f) {
dt = 0.0f;
g.pid_optflow_roll.reset_I();
g.pid_optflow_pitch.reset_I();
}
last_of_update = optflow.last_update();
// get latest velocity from sensor
vel = optflow.velocity();
}
// calculate time since last update
uint32_t time_since_update_ms = millis() - last_of_update;
// use pilot roll input if input is non-zero, altitude above 15m or optical flow sensor has timed out
if (input_roll != 0 || current_loc.alt > OPTFLOW_ALT_MAX_CM || time_since_update_ms > OPTFLOW_TIMEOUT_MS) {
roll_out = input_roll;
} else {
// run velocity through pid controller
roll_out = g.pid_optflow_roll.get_pid(-vel.x, dt);
// limit amount of change and maximum angle
// To-Do: replace reliance on of_roll, of_pitch within this function
roll_out = constrain_float(roll_out, (of_roll-OPTFLOW_RP_RATE_LIM), (of_roll+OPTFLOW_RP_RATE_LIM));
}
// use pilot pitch input if input is non-zero, altitude above 15m or optical flow sensor has timed out
if (input_pitch != 0 || current_loc.alt > OPTFLOW_ALT_MAX_CM || time_since_update_ms > OPTFLOW_TIMEOUT_MS) {
pitch_out = input_pitch;
} else {
// run velocity through pid controller
pitch_out = g.pid_optflow_pitch.get_pid(vel.y, dt);
// limit amount of change and maximum angle
// To-Do: replace reliance on of_roll, of_pitch within this function
pitch_out = constrain_float(pitch_out, (of_pitch-OPTFLOW_RP_RATE_LIM), (of_pitch+OPTFLOW_RP_RATE_LIM));
}
}
// reset_optflow_I - reset optflow position hold I terms
static void reset_optflow_I(void)
{
g.pid_optflow_roll.reset_I();
g.pid_optflow_pitch.reset_I();
}
#endif // OPTFLOW == ENABLED