mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 02:48:28 -04:00
cc2e156888
Fixed some typos found in the code.
230 lines
7.3 KiB
C++
230 lines
7.3 KiB
C++
/* Copyright (c) 2005, Dmitry Xmelkov
|
|
All rights reserved.
|
|
|
|
Rewritten in C by Soren Kuula
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
* Neither the name of the copyright holders nor the names of
|
|
contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#include "ftoa_engine.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
/*
|
|
* 2^b ~= f * r * 10^e
|
|
* where
|
|
* i = b div 8
|
|
* r = 2^(b mod 8)
|
|
* f = factorTable[i]
|
|
* e = exponentTable[i]
|
|
*/
|
|
static const int8_t exponentTable[32] = {
|
|
-36, -33, -31, -29, -26, -24, -21, -19,
|
|
-17, -14, -12, -9, -7, -4, -2, 0,
|
|
3, 5, 8, 10, 12, 15, 17, 20,
|
|
22, 24, 27, 29, 32, 34, 36, 39
|
|
};
|
|
|
|
static const uint32_t factorTable[32] = {
|
|
2295887404UL,
|
|
587747175UL,
|
|
1504632769UL,
|
|
3851859889UL,
|
|
986076132UL,
|
|
2524354897UL,
|
|
646234854UL,
|
|
1654361225UL,
|
|
4235164736UL,
|
|
1084202172UL,
|
|
2775557562UL,
|
|
710542736UL,
|
|
1818989404UL,
|
|
465661287UL,
|
|
1192092896UL,
|
|
3051757813UL,
|
|
781250000UL,
|
|
2000000000UL,
|
|
512000000UL,
|
|
1310720000UL,
|
|
3355443200UL,
|
|
858993459UL,
|
|
2199023256UL,
|
|
562949953UL,
|
|
1441151881UL,
|
|
3689348815UL,
|
|
944473297UL,
|
|
2417851639UL,
|
|
618970020UL,
|
|
1584563250UL,
|
|
4056481921UL,
|
|
1038459372UL
|
|
};
|
|
|
|
int16_t ftoa_engine(float val, char *buf, uint8_t precision, uint8_t maxDecimals)
|
|
{
|
|
uint8_t flags;
|
|
|
|
// Bit reinterpretation hacks. This will ONLY work on little endian machines.
|
|
uint8_t *valbits = (uint8_t*)&val;
|
|
union {
|
|
float v;
|
|
uint32_t u;
|
|
} x;
|
|
x.v = val;
|
|
uint32_t frac = x.u & 0x007fffffUL;
|
|
|
|
if (precision>7) precision=7;
|
|
|
|
// Read the sign, shift the exponent in place and delete it from frac.
|
|
if (valbits[3] & (1<<7)) flags = FTOA_MINUS; else flags = 0;
|
|
uint8_t exp = valbits[3]<<1;
|
|
if(valbits[2] & (1<<7)) exp++; // TODO possible but in case of subnormal
|
|
|
|
// Test for easy cases, zero and NaN
|
|
if(exp==0 && frac==0) {
|
|
buf[0] = flags | FTOA_ZERO;
|
|
uint8_t i;
|
|
for(i=0; i<=precision; i++) {
|
|
buf[i+1] = '0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if(exp == 0xff) {
|
|
if(frac == 0) flags |= FTOA_INF; else flags |= FTOA_NAN;
|
|
}
|
|
|
|
// The implicit leading 1 is made explicit, except if value subnormal.
|
|
if (exp != 0) frac |= (1UL<<23);
|
|
|
|
uint8_t idx = exp>>3;
|
|
int8_t exp10 = exponentTable[idx];
|
|
|
|
// We COULD try making the multiplication in situ, where we make
|
|
// frac and a 64 bit int overlap in memory and select/weigh the
|
|
// upper 32 bits that way. For starters, this is less risky:
|
|
int64_t prod = (int64_t)frac * (int64_t)factorTable[idx];
|
|
|
|
// The expConvFactorTable are factor are correct iff the lower 3 exponent
|
|
// bits are 1 (=7). Else we need to compensate by dividing frac.
|
|
// If the lower 3 bits are 7 we are right.
|
|
// If the lower 3 bits are 6 we right-shift once
|
|
// ..
|
|
// If the lower 3 bits are 0 we right-shift 7x
|
|
prod >>= (15-(exp & 7));
|
|
|
|
// Now convert to decimal.
|
|
uint8_t hadNonzeroDigit = 0; // a flag
|
|
uint8_t outputIdx = 0;
|
|
int64_t decimal = 100000000000000ull;
|
|
|
|
do {
|
|
char digit = '0';
|
|
while(1) {// find the first nonzero digit or any of the next digits.
|
|
while ((prod -= decimal) >= 0)
|
|
digit++;
|
|
// Now we got too low. Fix it by adding again, once.
|
|
// it might appear more efficient to check before subtract, or
|
|
// to save and restore last nonnegative value - but in fact
|
|
// they take as long time and more space.
|
|
prod += decimal;
|
|
decimal /= 10;
|
|
|
|
// If already found a leading nonzero digit, accept zeros.
|
|
if (hadNonzeroDigit) break;
|
|
|
|
// Else, don't return results with a leading zero! Instead
|
|
// skip those and decrement exp10 accordingly.
|
|
if(digit == '0') {
|
|
exp10--;
|
|
continue;
|
|
}
|
|
|
|
hadNonzeroDigit = 1;
|
|
|
|
// Compute how many digits N to output.
|
|
if(maxDecimals != 0) { // If limiting decimals...
|
|
int8_t beforeDP = exp10+1; // Digits before point
|
|
if (beforeDP < 1) beforeDP = 1; // Numbers < 1 should also output at least 1 digit.
|
|
/*
|
|
* Below a simpler version of this:
|
|
int8_t afterDP = outputNum - beforeDP;
|
|
if (afterDP > maxDecimals-1)
|
|
afterDP = maxDecimals-1;
|
|
outputNum = beforeDP + afterDP;
|
|
*/
|
|
maxDecimals = maxDecimals+beforeDP-1;
|
|
if (precision > maxDecimals)
|
|
precision = maxDecimals;
|
|
|
|
} else {
|
|
precision++; // Output one more digit than the param value.
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// Now have a digit.
|
|
outputIdx++;
|
|
if(digit < '0' + 10) // normal case.
|
|
buf[outputIdx] = digit;
|
|
else {
|
|
// Abnormal case, write 9s and bail.
|
|
// We might as well abuse hadNonzeroDigit as counter, it will not be used again.
|
|
for(hadNonzeroDigit=outputIdx; hadNonzeroDigit>0; hadNonzeroDigit--)
|
|
buf[hadNonzeroDigit] = '9';
|
|
goto roundup; // this is ugly but it _is_ code derived from assembler :)
|
|
}
|
|
} while (outputIdx<precision);
|
|
|
|
// Rounding:
|
|
decimal *= 10;
|
|
|
|
if (prod - (decimal >> 1) >= 0) {
|
|
|
|
roundup:
|
|
// Increment digit, cascade
|
|
while(outputIdx != 0) {
|
|
if(++buf[outputIdx] == '0' + 10) {
|
|
if(outputIdx == 1) {
|
|
buf[outputIdx] = '1';
|
|
exp10++;
|
|
flags |= FTOA_CARRY;
|
|
break;
|
|
} else
|
|
buf[outputIdx--] = '0'; // and the loop continues, carrying to next digit.
|
|
}
|
|
else break;
|
|
}
|
|
}
|
|
|
|
buf[0] = flags;
|
|
return exp10;
|
|
}
|
|
|