ardupilot/ArduCopter/control_acro.pde
2014-02-15 05:27:44 +11:00

115 lines
4.6 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* control_acro.pde - init and run calls for acro flight mode
*/
// acro_init - initialise acro controller
static bool acro_init(bool ignore_checks)
{
// clear stabilized rate errors
attitude_control.init_targets();
return true;
}
// acro_run - runs the acro controller
// should be called at 100hz or more
static void acro_run()
{
int16_t target_roll, target_pitch, target_yaw;
// if motors not running reset angle targets
if(!motors.armed() || g.rc_3.control_in <= 0) {
attitude_control.init_targets();
attitude_control.set_throttle_out(0, false);
return;
}
// convert the input to the desired body frame rate
get_pilot_desired_angle_rates(g.rc_1.control_in, g.rc_2.control_in, g.rc_4.control_in, target_roll, target_pitch, target_yaw);
attitude_control.ratebf_rpy(target_roll, target_pitch, target_yaw);
}
// get_pilot_desired_angle_rates - transform pilot's roll pitch and yaw input into a desired lean angle rates
// returns desired angle rates in centi-degrees-per-second
static void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, int16_t &roll_out, int16_t &pitch_out, int16_t &yaw_out)
{
// Calculate trainer mode earth frame rate command for roll
float rate_limit;
Vector3f rate_ef_level, rate_bf_level, rate_bf_request;
// calculate rate requests
rate_bf_request.x = roll_in * g.acro_rp_p;
rate_bf_request.y = pitch_in * g.acro_rp_p;
rate_bf_request.z = yaw_in * g.acro_yaw_p;
// todo: add acceleration slew
// calculate earth frame rate corrections to pull the copter back to level while in ACRO mode
// Calculate trainer mode earth frame rate command for roll
int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor);
roll_angle = constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE);
rate_ef_level.x = -roll_angle * g.acro_balance_roll;
// Calculate trainer mode earth frame rate command for pitch
int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor);
pitch_angle = constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE);
rate_ef_level.y = -pitch_angle * g.acro_balance_pitch;
// Calculate trainer mode earth frame rate command for yaw
rate_ef_level.z = 0;
// Calculate angle limiting earth frame rate commands
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
if (roll_angle > aparm.angle_max){
rate_ef_level.x += g.pi_stabilize_roll.get_p(aparm.angle_max-roll_angle);
}else if (roll_angle < -aparm.angle_max) {
rate_ef_level.x += g.pi_stabilize_roll.get_p(-aparm.angle_max-roll_angle);
}
if (pitch_angle > aparm.angle_max){
rate_ef_level.y += g.pi_stabilize_pitch.get_p(aparm.angle_max-pitch_angle);
}else if (pitch_angle < -aparm.angle_max) {
rate_ef_level.y += g.pi_stabilize_pitch.get_p(-aparm.angle_max-pitch_angle);
}
}
// convert earth-frame level rates to body-frame level rates
attitude_control.rate_ef_targets_to_bf(rate_ef_level, rate_bf_level);
// combine earth frame rate corrections with rate requests
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
rate_bf_request.x += rate_bf_level.x;
rate_bf_request.y += rate_bf_level.y;
rate_bf_request.z += rate_bf_level.z;
}else{
acro_level_mix = constrain_float(1-max(max(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0, 0, 1)*cos_pitch_x;
// Scale leveling rates by stick input
rate_bf_level = rate_bf_level*acro_level_mix;
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabs(fabs(rate_bf_request.x)-fabs(rate_bf_level.x));
rate_bf_request.x += rate_bf_level.x;
rate_bf_request.x = constrain_float(rate_bf_request.x, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabs(fabs(rate_bf_request.y)-fabs(rate_bf_level.y));
rate_bf_request.y += rate_bf_level.y;
rate_bf_request.y = constrain_float(rate_bf_request.y, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabs(fabs(rate_bf_request.z)-fabs(rate_bf_level.z));
rate_bf_request.z += rate_bf_level.z;
rate_bf_request.z = constrain_float(rate_bf_request.z, -rate_limit, rate_limit);
}
// hand back rate request
roll_out = rate_bf_request.x;
pitch_out = rate_bf_request.y;
yaw_out = rate_bf_request.z;
}