mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
fdb4f908bb
The existing code does not adjust the upper and lower throttle limits with the result that at and of discharge climb and reverse thrust performance is significantly degraded.
950 lines
37 KiB
C++
950 lines
37 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
main logic for servo control
|
|
*/
|
|
|
|
#include "Plane.h"
|
|
#include <utility>
|
|
|
|
/*****************************************
|
|
* Throttle slew limit
|
|
*****************************************/
|
|
void Plane::throttle_slew_limit(SRV_Channel::Aux_servo_function_t func)
|
|
{
|
|
uint8_t slewrate = aparm.throttle_slewrate;
|
|
if (control_mode == &mode_auto) {
|
|
if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) {
|
|
slewrate = g.takeoff_throttle_slewrate;
|
|
} else if (landing.get_throttle_slewrate() != 0 && flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
|
|
slewrate = landing.get_throttle_slewrate();
|
|
}
|
|
}
|
|
// if slew limit rate is set to zero then do not slew limit
|
|
if (slewrate) {
|
|
SRV_Channels::limit_slew_rate(func, slewrate, G_Dt);
|
|
}
|
|
}
|
|
|
|
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
|
|
|
|
Disable throttle if following conditions are met:
|
|
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
|
|
* AND
|
|
* 2 - Our reported altitude is within 10 meters of the home altitude.
|
|
* 3 - Our reported speed is under 5 meters per second.
|
|
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached
|
|
* OR
|
|
* 5 - Home location is not set
|
|
* OR
|
|
* 6- Landing does not want to allow throttle
|
|
*/
|
|
bool Plane::suppress_throttle(void)
|
|
{
|
|
#if PARACHUTE == ENABLED
|
|
if (auto_throttle_mode && parachute.release_initiated()) {
|
|
// throttle always suppressed in auto-throttle modes after parachute release initiated
|
|
throttle_suppressed = true;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
if (landing.is_throttle_suppressed()) {
|
|
return true;
|
|
}
|
|
|
|
if (!throttle_suppressed) {
|
|
// we've previously met a condition for unsupressing the throttle
|
|
return false;
|
|
}
|
|
if (!auto_throttle_mode) {
|
|
// the user controls the throttle
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
if (control_mode == &mode_auto && g.auto_fbw_steer == 42) {
|
|
// user has throttle control
|
|
return false;
|
|
}
|
|
|
|
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5);
|
|
|
|
if ((control_mode == &mode_auto &&
|
|
auto_state.takeoff_complete == false) ||
|
|
control_mode == &mode_takeoff) {
|
|
|
|
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000;
|
|
if (is_flying() &&
|
|
millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode
|
|
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home
|
|
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch
|
|
gps_movement) { // definite gps movement
|
|
// we're already flying, do not suppress the throttle. We can get
|
|
// stuck in this condition if we reset a mission and cmd 1 is takeoff
|
|
// but we're currently flying around below the takeoff altitude
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
if (auto_takeoff_check()) {
|
|
// we're in auto takeoff
|
|
throttle_suppressed = false;
|
|
auto_state.baro_takeoff_alt = barometer.get_altitude();
|
|
return false;
|
|
}
|
|
// keep throttle suppressed
|
|
return true;
|
|
}
|
|
|
|
if (fabsf(relative_altitude) >= 10.0f) {
|
|
// we're more than 10m from the home altitude
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
if (gps_movement) {
|
|
// if we have an airspeed sensor, then check it too, and
|
|
// require 5m/s. This prevents throttle up due to spiky GPS
|
|
// groundspeed with bad GPS reception
|
|
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) {
|
|
// we're moving at more than 5 m/s
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (quadplane.is_flying()) {
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
// throttle remains suppressed
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
mixer for elevon and vtail channels setup using designated servo
|
|
function values. This mixer operates purely on scaled values,
|
|
allowing the user to trim and limit individual servos using the
|
|
SERVOn_* parameters
|
|
*/
|
|
void Plane::channel_function_mixer(SRV_Channel::Aux_servo_function_t func1_in, SRV_Channel::Aux_servo_function_t func2_in,
|
|
SRV_Channel::Aux_servo_function_t func1_out, SRV_Channel::Aux_servo_function_t func2_out)
|
|
{
|
|
// the order is setup so that non-reversed servos go "up", and
|
|
// func1 is the "left" channel. Users can adjust with channel
|
|
// reversal as needed
|
|
float in1 = SRV_Channels::get_output_scaled(func1_in);
|
|
float in2 = SRV_Channels::get_output_scaled(func2_in);
|
|
|
|
// apply MIXING_OFFSET to input channels
|
|
if (g.mixing_offset < 0) {
|
|
in2 *= (100 - g.mixing_offset) * 0.01;
|
|
} else if (g.mixing_offset > 0) {
|
|
in1 *= (100 + g.mixing_offset) * 0.01;
|
|
}
|
|
|
|
float out1 = constrain_float((in2 - in1) * g.mixing_gain, -4500, 4500);
|
|
float out2 = constrain_float((in2 + in1) * g.mixing_gain, -4500, 4500);
|
|
SRV_Channels::set_output_scaled(func1_out, out1);
|
|
SRV_Channels::set_output_scaled(func2_out, out2);
|
|
}
|
|
|
|
|
|
/*
|
|
setup flaperon output channels
|
|
*/
|
|
void Plane::flaperon_update(int8_t flap_percent)
|
|
{
|
|
if (!SRV_Channels::function_assigned(SRV_Channel::k_flaperon_left) &&
|
|
!SRV_Channels::function_assigned(SRV_Channel::k_flaperon_right)) {
|
|
return;
|
|
}
|
|
/*
|
|
flaperons are implemented as a mixer between aileron and a
|
|
percentage of flaps. Flap input can come from a manual channel
|
|
or from auto flaps.
|
|
*/
|
|
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
|
|
float flaperon_left = constrain_float(aileron + flap_percent * 45, -4500, 4500);
|
|
float flaperon_right = constrain_float(aileron - flap_percent * 45, -4500, 4500);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_left, flaperon_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_right, flaperon_right);
|
|
}
|
|
|
|
|
|
/*
|
|
setup differential spoiler output channels
|
|
|
|
Differential spoilers are a type of elevon that is split on each
|
|
wing to give yaw control, mixed from rudder
|
|
*/
|
|
void Plane::dspoiler_update(void)
|
|
{
|
|
// just check we have a left dspoiler, and if so calculate all outputs
|
|
if (!SRV_Channels::function_assigned(SRV_Channel::k_dspoilerLeft1)) {
|
|
return;
|
|
}
|
|
|
|
const int8_t bitmask = g2.crow_flap_options.get();
|
|
const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0;
|
|
const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0;
|
|
const bool progresive_crow = (bitmask & CrowFlapOptions::PROGRESSIVE_CROW) != 0;
|
|
|
|
// if flying wing use elevons else use ailerons
|
|
float elevon_left;
|
|
float elevon_right;
|
|
if (flying_wing) {
|
|
elevon_left = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left);
|
|
elevon_right = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right);
|
|
} else {
|
|
const float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
|
|
elevon_left = -aileron;
|
|
elevon_right = aileron;
|
|
}
|
|
|
|
const float rudder_rate = g.dspoiler_rud_rate * 0.01f;
|
|
const float rudder = SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) * rudder_rate;
|
|
float dspoiler_outer_left = elevon_left;
|
|
float dspoiler_outer_right = elevon_right;
|
|
|
|
float dspoiler_inner_left = 0;
|
|
float dspoiler_inner_right = 0;
|
|
|
|
// full span ailerons / elevons
|
|
if (full_span_aileron) {
|
|
dspoiler_inner_left = elevon_left;
|
|
dspoiler_inner_right = elevon_right;
|
|
}
|
|
|
|
if (rudder > 0) {
|
|
// apply rudder to right wing
|
|
dspoiler_outer_right = constrain_float(dspoiler_outer_right + rudder, -4500, 4500);
|
|
dspoiler_inner_right = constrain_float(dspoiler_inner_right - rudder, -4500, 4500);
|
|
} else {
|
|
// apply rudder to left wing
|
|
dspoiler_outer_left = constrain_float(dspoiler_outer_left - rudder, -4500, 4500);
|
|
dspoiler_inner_left = constrain_float(dspoiler_inner_left + rudder, -4500, 4500);
|
|
}
|
|
|
|
// limit flap throw used for aileron
|
|
const int8_t aileron_matching = g2.crow_flap_aileron_matching.get();
|
|
if (aileron_matching < 100) {
|
|
// only do matching if it will make a difference
|
|
const float aileron_matching_scaled = aileron_matching * 0.01;
|
|
if (is_negative(dspoiler_inner_left)) {
|
|
dspoiler_inner_left *= aileron_matching_scaled;
|
|
}
|
|
if (is_negative(dspoiler_inner_right)) {
|
|
dspoiler_inner_right *= aileron_matching_scaled;
|
|
}
|
|
}
|
|
|
|
const int16_t weight_outer = g2.crow_flap_weight_outer.get();
|
|
const int16_t weight_inner = g2.crow_flap_weight_inner.get();
|
|
if (weight_outer > 0 || weight_inner > 0) {
|
|
/*
|
|
apply crow flaps by apply the same split of the differential
|
|
spoilers to both wings. Get flap percentage from k_flap_auto, which is set
|
|
in set_servos_flaps() as the maximum of manual and auto flap control
|
|
*/
|
|
const int16_t flap_percent = SRV_Channels::get_output_scaled(SRV_Channel::k_flap_auto);
|
|
|
|
if (flap_percent > 0) {
|
|
float inner_flap_scaled = (float)flap_percent;
|
|
float outer_flap_scaled = (float)flap_percent;
|
|
if (progresive_crow) {
|
|
// apply 0 - full inner from 0 to 50% flap then add in outer above 50%
|
|
inner_flap_scaled = constrain_float(inner_flap_scaled * 2, 0,100);
|
|
outer_flap_scaled = constrain_float(outer_flap_scaled - 50, 0,50) * 2;
|
|
}
|
|
// scale flaps so when weights are 100 they give full up or down
|
|
dspoiler_outer_left = constrain_float(dspoiler_outer_left + outer_flap_scaled * weight_outer * 0.45, -4500, 4500);
|
|
dspoiler_inner_left = constrain_float(dspoiler_inner_left - inner_flap_scaled * weight_inner * 0.45, -4500, 4500);
|
|
dspoiler_outer_right = constrain_float(dspoiler_outer_right + outer_flap_scaled * weight_outer * 0.45, -4500, 4500);
|
|
dspoiler_inner_right = constrain_float(dspoiler_inner_right - inner_flap_scaled * weight_inner * 0.45, -4500, 4500);
|
|
}
|
|
}
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right);
|
|
}
|
|
|
|
/*
|
|
setup servos for idle mode
|
|
Idle mode is used during balloon launch to keep servos still, apart
|
|
from occasional wiggle to prevent freezing up
|
|
*/
|
|
void Plane::set_servos_idle(void)
|
|
{
|
|
int16_t servo_value;
|
|
// move over full range for 2 seconds
|
|
if (auto_state.idle_wiggle_stage != 0) {
|
|
auto_state.idle_wiggle_stage += 2;
|
|
}
|
|
if (auto_state.idle_wiggle_stage == 0) {
|
|
servo_value = 0;
|
|
} else if (auto_state.idle_wiggle_stage < 50) {
|
|
servo_value = auto_state.idle_wiggle_stage * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 100) {
|
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 150) {
|
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 200) {
|
|
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50);
|
|
} else {
|
|
auto_state.idle_wiggle_stage = 0;
|
|
servo_value = 0;
|
|
}
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, servo_value);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, servo_value);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, servo_value);
|
|
SRV_Channels::set_output_to_trim(SRV_Channel::k_throttle);
|
|
|
|
SRV_Channels::output_ch_all();
|
|
}
|
|
|
|
/*
|
|
pass through channels in manual mode
|
|
*/
|
|
void Plane::set_servos_manual_passthrough(void)
|
|
{
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, channel_roll->get_control_in_zero_dz());
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, channel_pitch->get_control_in_zero_dz());
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, channel_rudder->get_control_in_zero_dz());
|
|
int8_t throttle = get_throttle_input(true);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
|
|
|
|
if (quadplane.available() && (quadplane.options & QuadPlane::OPTION_IDLE_GOV_MANUAL)) {
|
|
// for quadplanes it can be useful to run the idle governor in MANUAL mode
|
|
// as it prevents the VTOL motors from running
|
|
int8_t min_throttle = aparm.throttle_min.get();
|
|
|
|
// apply idle governor
|
|
g2.ice_control.update_idle_governor(min_throttle);
|
|
throttle = MAX(throttle, min_throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Scale the throttle to conpensate for battery voltage drop
|
|
*/
|
|
void Plane::throttle_voltage_comp(int8_t &min_throttle, int8_t &max_throttle)
|
|
{
|
|
// return if not enabled, or setup incorrectly
|
|
if (g2.fwd_thr_batt_voltage_min >= g2.fwd_thr_batt_voltage_max || !is_positive(g2.fwd_thr_batt_voltage_max)) {
|
|
return;
|
|
}
|
|
|
|
float batt_voltage_resting_estimate = AP::battery().voltage_resting_estimate(g2.fwd_thr_batt_idx);
|
|
// Return for a very low battery
|
|
if (batt_voltage_resting_estimate < 0.25f * g2.fwd_thr_batt_voltage_min) {
|
|
return;
|
|
}
|
|
|
|
// constrain read voltage to min and max params
|
|
batt_voltage_resting_estimate = constrain_float(batt_voltage_resting_estimate,g2.fwd_thr_batt_voltage_min,g2.fwd_thr_batt_voltage_max);
|
|
|
|
// don't apply compensation if the voltage is excessively low
|
|
if (batt_voltage_resting_estimate < 1) {
|
|
return;
|
|
}
|
|
|
|
// Scale the throttle up to compensate for voltage drop
|
|
// Ratio = 1 when voltage = voltage max, ratio increases as voltage drops
|
|
const float ratio = g2.fwd_thr_batt_voltage_max / batt_voltage_resting_estimate;
|
|
|
|
// Scale the throttle limits to prevent subsequent clipping
|
|
min_throttle = MAX((int8_t)(ratio * (float)min_throttle), -100);
|
|
max_throttle = MIN((int8_t)(ratio * (float)max_throttle), 100);
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
|
|
constrain_int16(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * ratio, -100, 100));
|
|
}
|
|
|
|
/*
|
|
calculate any throttle limits based on the watt limiter
|
|
*/
|
|
void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle)
|
|
{
|
|
uint32_t now = millis();
|
|
if (battery.overpower_detected()) {
|
|
// overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value
|
|
// throttle limit will attack by 10% per second
|
|
|
|
if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > 0 && // demanding too much positive thrust
|
|
throttle_watt_limit_max < max_throttle - 25 &&
|
|
now - throttle_watt_limit_timer_ms >= 1) {
|
|
// always allow for 25% throttle available regardless of battery status
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_max++;
|
|
|
|
} else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0 &&
|
|
min_throttle < 0 && // reverse thrust is available
|
|
throttle_watt_limit_min < -(min_throttle) - 25 &&
|
|
now - throttle_watt_limit_timer_ms >= 1) {
|
|
// always allow for 25% throttle available regardless of battery status
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_min++;
|
|
}
|
|
|
|
} else if (now - throttle_watt_limit_timer_ms >= 1000) {
|
|
// it has been 1 second since last over-current, check if we can resume higher throttle.
|
|
// this throttle release is needed to allow raising the max_throttle as the battery voltage drains down
|
|
// throttle limit will release by 1% per second
|
|
if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > throttle_watt_limit_max && // demanding max forward thrust
|
|
throttle_watt_limit_max > 0) { // and we're currently limiting it
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_max--;
|
|
|
|
} else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < throttle_watt_limit_min && // demanding max negative thrust
|
|
throttle_watt_limit_min > 0) { // and we're limiting it
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_min--;
|
|
}
|
|
}
|
|
|
|
max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max);
|
|
if (min_throttle < 0) {
|
|
min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
setup output channels all non-manual modes
|
|
*/
|
|
void Plane::set_servos_controlled(void)
|
|
{
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
|
|
// allow landing to override servos if it would like to
|
|
landing.override_servos();
|
|
}
|
|
|
|
// convert 0 to 100% (or -100 to +100) into PWM
|
|
int8_t min_throttle = aparm.throttle_min.get();
|
|
int8_t max_throttle = aparm.throttle_max.get();
|
|
|
|
// apply idle governor
|
|
g2.ice_control.update_idle_governor(min_throttle);
|
|
|
|
if (min_throttle < 0 && !allow_reverse_thrust()) {
|
|
// reverse thrust is available but inhibited.
|
|
min_throttle = 0;
|
|
}
|
|
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_TAKEOFF || flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND) {
|
|
if(aparm.takeoff_throttle_max != 0) {
|
|
max_throttle = aparm.takeoff_throttle_max;
|
|
} else {
|
|
max_throttle = aparm.throttle_max;
|
|
}
|
|
} else if (landing.is_flaring()) {
|
|
min_throttle = 0;
|
|
}
|
|
|
|
// conpensate for battery voltage drop
|
|
throttle_voltage_comp(min_throttle, max_throttle);
|
|
|
|
// apply watt limiter
|
|
throttle_watt_limiter(min_throttle, max_throttle);
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
|
|
constrain_int16(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), min_throttle, max_throttle));
|
|
|
|
if (!hal.util->get_soft_armed()) {
|
|
if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) {
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM);
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0);
|
|
}
|
|
} else if (suppress_throttle()) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0 ); // default
|
|
// throttle is suppressed (above) to zero in final flare in auto mode, but we allow instead thr_min if user prefers, eg turbines:
|
|
if (landing.is_flaring() && landing.use_thr_min_during_flare() ) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, aparm.throttle_min.get());
|
|
}
|
|
if (g.throttle_suppress_manual) {
|
|
// manual pass through of throttle while throttle is suppressed
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
|
|
}
|
|
} else if (control_mode == &mode_stabilize ||
|
|
control_mode == &mode_training ||
|
|
control_mode == &mode_acro ||
|
|
control_mode == &mode_fbwa ||
|
|
control_mode == &mode_autotune) {
|
|
// a manual throttle mode
|
|
if (failsafe.throttle_counter) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0);
|
|
} else if (g.throttle_passthru_stabilize) {
|
|
// manual pass through of throttle while in FBWA or
|
|
// STABILIZE mode with THR_PASS_STAB set
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
|
|
constrain_int16(get_throttle_input(true), min_throttle, max_throttle));
|
|
}
|
|
} else if ((control_mode == &mode_guided || control_mode == &mode_avoidADSB) &&
|
|
guided_throttle_passthru) {
|
|
// manual pass through of throttle while in GUIDED
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
|
|
} else if (quadplane.in_vtol_mode()) {
|
|
// ask quadplane code for forward throttle
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
|
|
constrain_int16(quadplane.forward_throttle_pct(), min_throttle, max_throttle));
|
|
}
|
|
}
|
|
|
|
/*
|
|
setup flap outputs
|
|
*/
|
|
void Plane::set_servos_flaps(void)
|
|
{
|
|
// Auto flap deployment
|
|
int8_t auto_flap_percent = 0;
|
|
int8_t manual_flap_percent = 0;
|
|
|
|
// work out any manual flap input
|
|
RC_Channel *flapin = rc().find_channel_for_option(RC_Channel::AUX_FUNC::FLAP);
|
|
if (flapin != nullptr && !failsafe.rc_failsafe && failsafe.throttle_counter == 0) {
|
|
manual_flap_percent = flapin->percent_input();
|
|
}
|
|
|
|
if (auto_throttle_mode) {
|
|
int16_t flapSpeedSource = 0;
|
|
if (ahrs.airspeed_sensor_enabled()) {
|
|
flapSpeedSource = target_airspeed_cm * 0.01f;
|
|
} else {
|
|
flapSpeedSource = aparm.throttle_cruise;
|
|
}
|
|
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) {
|
|
auto_flap_percent = g.flap_2_percent;
|
|
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) {
|
|
auto_flap_percent = g.flap_1_percent;
|
|
} //else flaps stay at default zero deflection
|
|
|
|
/*
|
|
special flap levels for takeoff and landing. This works
|
|
better than speed based flaps as it leads to less
|
|
possibility of oscillation
|
|
*/
|
|
switch (flight_stage) {
|
|
case AP_Vehicle::FixedWing::FLIGHT_TAKEOFF:
|
|
case AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND:
|
|
if (g.takeoff_flap_percent != 0) {
|
|
auto_flap_percent = g.takeoff_flap_percent;
|
|
}
|
|
break;
|
|
case AP_Vehicle::FixedWing::FLIGHT_NORMAL:
|
|
if (g.takeoff_flap_percent != 0 && in_preLaunch_flight_stage()) {
|
|
// TODO: move this to a new FLIGHT_PRE_TAKEOFF stage
|
|
auto_flap_percent = g.takeoff_flap_percent;
|
|
}
|
|
break;
|
|
case AP_Vehicle::FixedWing::FLIGHT_LAND:
|
|
if (landing.get_flap_percent() != 0) {
|
|
auto_flap_percent = landing.get_flap_percent();
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// manual flap input overrides auto flap input
|
|
if (abs(manual_flap_percent) > auto_flap_percent) {
|
|
auto_flap_percent = manual_flap_percent;
|
|
}
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flap_auto, auto_flap_percent);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flap, manual_flap_percent);
|
|
|
|
if (g.flap_slewrate) {
|
|
SRV_Channels::limit_slew_rate(SRV_Channel::k_flap_auto, g.flap_slewrate, G_Dt);
|
|
SRV_Channels::limit_slew_rate(SRV_Channel::k_flap, g.flap_slewrate, G_Dt);
|
|
}
|
|
|
|
// output to flaperons, if any
|
|
flaperon_update(auto_flap_percent);
|
|
}
|
|
|
|
#if LANDING_GEAR_ENABLED == ENABLED
|
|
/*
|
|
setup landing gear state
|
|
*/
|
|
void Plane::set_landing_gear(void)
|
|
{
|
|
if (control_mode == &mode_auto && hal.util->get_soft_armed() && is_flying() && gear.last_flight_stage != flight_stage) {
|
|
switch (flight_stage) {
|
|
case AP_Vehicle::FixedWing::FLIGHT_LAND:
|
|
g2.landing_gear.deploy_for_landing();
|
|
break;
|
|
case AP_Vehicle::FixedWing::FLIGHT_NORMAL:
|
|
g2.landing_gear.retract_after_takeoff();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
gear.last_flight_stage = flight_stage;
|
|
}
|
|
#endif // LANDING_GEAR_ENABLED
|
|
|
|
/*
|
|
apply vtail and elevon mixers
|
|
the rewrites radio_out for the corresponding channels
|
|
*/
|
|
void Plane::servo_output_mixers(void)
|
|
{
|
|
// mix elevons and vtail channels
|
|
channel_function_mixer(SRV_Channel::k_aileron, SRV_Channel::k_elevator, SRV_Channel::k_elevon_left, SRV_Channel::k_elevon_right);
|
|
channel_function_mixer(SRV_Channel::k_rudder, SRV_Channel::k_elevator, SRV_Channel::k_vtail_right, SRV_Channel::k_vtail_left);
|
|
|
|
// implement differential spoilers
|
|
dspoiler_update();
|
|
}
|
|
|
|
/*
|
|
support for twin-engine planes
|
|
*/
|
|
void Plane::servos_twin_engine_mix(void)
|
|
{
|
|
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
|
|
float rud_gain = float(plane.g2.rudd_dt_gain) / 100;
|
|
rudder_dt = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / float(SERVO_MAX);
|
|
|
|
#if ADVANCED_FAILSAFE == ENABLED
|
|
if (afs.should_crash_vehicle()) {
|
|
// when in AFS failsafe force rudder input for differential thrust to zero
|
|
rudder_dt = 0;
|
|
}
|
|
#endif
|
|
|
|
float throttle_left, throttle_right;
|
|
|
|
if (throttle < 0 && have_reverse_thrust() && allow_reverse_thrust()) {
|
|
// doing reverse thrust
|
|
throttle_left = constrain_float(throttle + 50 * rudder_dt, -100, 0);
|
|
throttle_right = constrain_float(throttle - 50 * rudder_dt, -100, 0);
|
|
} else if (throttle <= 0) {
|
|
throttle_left = throttle_right = 0;
|
|
} else {
|
|
// doing forward thrust
|
|
throttle_left = constrain_float(throttle + 50 * rudder_dt, 0, 100);
|
|
throttle_right = constrain_float(throttle - 50 * rudder_dt, 0, 100);
|
|
}
|
|
if (!hal.util->get_soft_armed()) {
|
|
if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) {
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM);
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0);
|
|
}
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right);
|
|
throttle_slew_limit(SRV_Channel::k_throttleLeft);
|
|
throttle_slew_limit(SRV_Channel::k_throttleRight);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Set the flight control servos based on the current calculated values
|
|
|
|
This function operates by first building up output values for
|
|
channels using set_servo() and set_radio_out(). Using
|
|
set_radio_out() is for when a raw PWM value of output is given which
|
|
does not depend on any output scaling. Using set_servo() is for when
|
|
scaling and mixing will be needed.
|
|
|
|
Finally servos_output() is called to push the final PWM values
|
|
for output channels
|
|
*/
|
|
void Plane::set_servos(void)
|
|
{
|
|
// start with output corked. the cork is released when we run
|
|
// servos_output(), which is run from all code paths in this
|
|
// function
|
|
SRV_Channels::cork();
|
|
|
|
// this is to allow the failsafe module to deliberately crash
|
|
// the plane. Only used in extreme circumstances to meet the
|
|
// OBC rules
|
|
#if ADVANCED_FAILSAFE == ENABLED
|
|
if (afs.should_crash_vehicle()) {
|
|
afs.terminate_vehicle();
|
|
if (!afs.terminating_vehicle_via_landing()) {
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// do any transition updates for quadplane
|
|
quadplane.update();
|
|
|
|
if (control_mode == &mode_auto && auto_state.idle_mode) {
|
|
// special handling for balloon launch
|
|
set_servos_idle();
|
|
servos_output();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
see if we are doing ground steering.
|
|
*/
|
|
if (!steering_control.ground_steering) {
|
|
// we are not at an altitude for ground steering. Set the nose
|
|
// wheel to the rudder just in case the barometer has drifted
|
|
// a lot
|
|
steering_control.steering = steering_control.rudder;
|
|
} else if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) {
|
|
// we are within the ground steering altitude but don't have a
|
|
// dedicated steering channel. Set the rudder to the ground
|
|
// steering output
|
|
steering_control.rudder = steering_control.steering;
|
|
}
|
|
|
|
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run
|
|
steering_control.ground_steering = false;
|
|
|
|
if (control_mode == &mode_training) {
|
|
steering_control.rudder = channel_rudder->get_control_in();
|
|
}
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, steering_control.rudder);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering_control.steering);
|
|
|
|
if (control_mode == &mode_manual) {
|
|
set_servos_manual_passthrough();
|
|
} else {
|
|
set_servos_controlled();
|
|
}
|
|
|
|
// setup flap outputs
|
|
set_servos_flaps();
|
|
|
|
#if LANDING_GEAR_ENABLED == ENABLED
|
|
// setup landing gear output
|
|
set_landing_gear();
|
|
#endif
|
|
|
|
if (auto_throttle_mode ||
|
|
quadplane.in_assisted_flight() ||
|
|
quadplane.in_vtol_mode()) {
|
|
/* only do throttle slew limiting in modes where throttle
|
|
* control is automatic */
|
|
throttle_slew_limit(SRV_Channel::k_throttle);
|
|
}
|
|
|
|
if (!arming.is_armed()) {
|
|
//Some ESCs get noisy (beep error msgs) if PWM == 0.
|
|
//This little segment aims to avoid this.
|
|
switch (arming.arming_required()) {
|
|
case AP_Arming::Required::NO:
|
|
//keep existing behavior: do nothing to radio_out
|
|
//(don't disarm throttle channel even if AP_Arming class is)
|
|
break;
|
|
|
|
case AP_Arming::Required::YES_ZERO_PWM:
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, 0);
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, 0);
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, 0);
|
|
break;
|
|
|
|
case AP_Arming::Required::YES_MIN_PWM:
|
|
default:
|
|
int8_t min_throttle = MAX(aparm.throttle_min.get(),0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, min_throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, min_throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, min_throttle);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if HIL_SUPPORT
|
|
if (g.hil_mode == 1) {
|
|
// get the servos to the GCS immediately for HIL
|
|
if (HAVE_PAYLOAD_SPACE(MAVLINK_COMM_0, RC_CHANNELS_SCALED)) {
|
|
send_servo_out(MAVLINK_COMM_0);
|
|
}
|
|
if (!g.hil_servos) {
|
|
// we don't run the output mixer
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (landing.get_then_servos_neutral() > 0 &&
|
|
control_mode == &mode_auto &&
|
|
landing.get_disarm_delay() > 0 &&
|
|
landing.is_complete() &&
|
|
!arming.is_armed()) {
|
|
// after an auto land and auto disarm, set the servos to be neutral just
|
|
// in case we're upside down or some crazy angle and straining the servos.
|
|
if (landing.get_then_servos_neutral() == 1) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, 0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, 0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0);
|
|
} else if (landing.get_then_servos_neutral() == 2) {
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_aileron, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_elevator, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_rudder, SRV_Channel::Limit::ZERO_PWM);
|
|
}
|
|
}
|
|
|
|
uint8_t override_pct;
|
|
if (g2.ice_control.throttle_override(override_pct)) {
|
|
// the ICE controller wants to override the throttle for starting
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, override_pct);
|
|
}
|
|
|
|
// run output mixer and send values to the hal for output
|
|
servos_output();
|
|
}
|
|
|
|
|
|
/*
|
|
run configured output mixer. This takes calculated servo_out values
|
|
for each channel and calculates PWM values, then pushes them to
|
|
hal.rcout
|
|
*/
|
|
void Plane::servos_output(void)
|
|
{
|
|
SRV_Channels::cork();
|
|
|
|
// support twin-engine aircraft
|
|
servos_twin_engine_mix();
|
|
|
|
// cope with tailsitters and bicopters
|
|
quadplane.tailsitter_output();
|
|
quadplane.tiltrotor_bicopter();
|
|
|
|
// run vtail and elevon mixers
|
|
servo_output_mixers();
|
|
|
|
// support MANUAL_RCMASK
|
|
if (g2.manual_rc_mask.get() != 0 && control_mode == &mode_manual) {
|
|
SRV_Channels::copy_radio_in_out_mask(uint16_t(g2.manual_rc_mask.get()));
|
|
}
|
|
|
|
SRV_Channels::calc_pwm();
|
|
|
|
SRV_Channels::output_ch_all();
|
|
|
|
SRV_Channels::push();
|
|
|
|
if (g2.servo_channels.auto_trim_enabled()) {
|
|
servos_auto_trim();
|
|
}
|
|
}
|
|
|
|
void Plane::update_throttle_hover() {
|
|
// update hover throttle at 100Hz
|
|
quadplane.update_throttle_hover();
|
|
}
|
|
|
|
/*
|
|
implement automatic persistent trim of control surfaces with
|
|
AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it
|
|
would impact R/C transmitter calibration
|
|
*/
|
|
void Plane::servos_auto_trim(void)
|
|
{
|
|
// only in auto modes and FBWA
|
|
if (!auto_throttle_mode && control_mode != &mode_fbwa) {
|
|
return;
|
|
}
|
|
if (!hal.util->get_soft_armed()) {
|
|
return;
|
|
}
|
|
if (!is_flying()) {
|
|
return;
|
|
}
|
|
if (quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) {
|
|
// can't auto-trim with quadplane motors running
|
|
return;
|
|
}
|
|
if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) {
|
|
// only when close to level
|
|
return;
|
|
}
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - auto_trim.last_trim_check < 500) {
|
|
// check twice a second. We want slow trim update
|
|
return;
|
|
}
|
|
if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) {
|
|
// only when definitely moving
|
|
return;
|
|
}
|
|
|
|
// adjust trim on channels by a small amount according to I value
|
|
float roll_I = rollController.get_pid_info().I;
|
|
float pitch_I = pitchController.get_pid_info().I;
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_aileron, roll_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_elevator, pitch_I);
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_left, pitch_I - roll_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_right, pitch_I + roll_I);
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_left, pitch_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_right, pitch_I);
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_left, roll_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_right, roll_I);
|
|
|
|
// cope with various dspoiler options
|
|
const int8_t bitmask = g2.crow_flap_options.get();
|
|
const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0;
|
|
const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0;
|
|
|
|
float dspoiler_outer_left = - roll_I;
|
|
float dspoiler_inner_left = 0.0f;
|
|
float dspoiler_outer_right = roll_I;
|
|
float dspoiler_inner_right = 0.0f;
|
|
|
|
if (flying_wing) {
|
|
dspoiler_outer_left += pitch_I;
|
|
dspoiler_outer_right += pitch_I;
|
|
}
|
|
if (full_span_aileron) {
|
|
dspoiler_inner_left = dspoiler_outer_left;
|
|
dspoiler_inner_right = dspoiler_outer_right;
|
|
}
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right);
|
|
|
|
auto_trim.last_trim_check = now;
|
|
|
|
if (now - auto_trim.last_trim_save > 10000) {
|
|
auto_trim.last_trim_save = now;
|
|
g2.servo_channels.save_trim();
|
|
}
|
|
|
|
}
|