ardupilot/ArduCopterMega/motors.pde

378 lines
11 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define ARM_DELAY 10
#define DISARM_DELAY 10
void arm_motors()
{
static byte arming_counter;
// Arm motor output : Throttle down and full yaw right for more than 2 seconds
if (g.rc_3.control_in == 0){
// full right
if (g.rc_4.control_in > 4000) {
if (arming_counter >= ARM_DELAY) {
motor_armed = true;
arming_counter = ARM_DELAY;
// Remember Orientation
// ---------------------------
init_simple_bearing();
} else{
arming_counter++;
}
// full left
}else if (g.rc_4.control_in < -4000) {
if (arming_counter >= DISARM_DELAY){
motor_armed = false;
arming_counter = DISARM_DELAY;
}else{
arming_counter++;
}
// centered
}else{
arming_counter = 0;
}
}else{
arming_counter = 0;
}
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
void
set_servos_4()
{
static byte num;
int out_min;
// Quadcopter mix
if (motor_armed == true && motor_auto_safe == true) {
out_min = g.rc_3.radio_min;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + 90;
//Serial.printf("out: %d %d %d %d\t\t", g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.servo_out, g.rc_4.servo_out);
// creates the radio_out and pwm_out values
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
// limit Yaw control so we don't clip and loose altitude
// this is only a partial solution.
// g.rc_4.pwm_out = min(g.rc_4.pwm_out, (g.rc_3.radio_out - out_min));
//Serial.printf("out: %d %d %d %d\n", g.rc_1.radio_out, g.rc_2.radio_out, g.rc_3.radio_out, g.rc_4.radio_out);
//Serial.printf("yaw: %d ", g.rc_4.radio_out);
if(g.frame_type == PLUS_FRAME){
//Serial.println("P_FRAME");
motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out;
motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out;
motor_out[CH_3] = g.rc_3.radio_out + g.rc_2.pwm_out;
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out;
motor_out[CH_1] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
}else if(g.frame_type == X_FRAME){
//Serial.println("X_FRAME");
int roll_out = g.rc_1.pwm_out * .707;
int pitch_out = g.rc_2.pwm_out * .707;
// left
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
motor_out[CH_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
// right
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK
//Serial.printf("\tb4: %d %d %d %d ", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
motor_out[CH_1] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
//Serial.printf("\tl8r: %d %d %d %d\n", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
}else if(g.frame_type == TRI_FRAME){
//Serial.println("TRI_FRAME");
// Tri-copter power distribution
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left front
motor_out[CH_2] = g.rc_3.radio_out + roll_out + pitch_out;
//right front
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out;
// rear
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out;
// this is a compensation for the angle of the yaw motor. Its linear, but should work ok.
//motor_out[CH_4] += (float)(abs(g.rc_4.control_in)) * .013;
}else if (g.frame_type == HEXAX_FRAME) {
//Serial.println("6_FRAME");
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left side
motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // CCW
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW
motor_out[CH_8] = g.rc_3.radio_out + roll_out - pitch_out; // CW
//right side
motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW
motor_out[CH_7] = g.rc_3.radio_out - roll_out + pitch_out; // CCW
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_7] += g.rc_4.pwm_out; // CCW
motor_out[CH_4] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_8] -= g.rc_4.pwm_out; // CW
}else if (g.frame_type == HEXAP_FRAME) {
//Serial.println("HEXAP_FRAME");
int roll_out = g.rc_1.pwm_out;
int pitch_out = (float)g.rc_2.pwm_out * .5;
//Back side
motor_out[CH_8] = g.rc_3.radio_out - g.rc_2.pwm_out; // CCW BACK
motor_out[CH_1] = g.rc_3.radio_out + roll_out - pitch_out; // CW, BACK LEFT
motor_out[CH_3] = g.rc_3.radio_out - roll_out - pitch_out; // CW BACK RIGHT
//Front side
motor_out[CH_7] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT
motor_out[CH_2] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT
motor_out[CH_4] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT
motor_out[CH_8] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_4] += g.rc_4.pwm_out; // CCW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_7] -= g.rc_4.pwm_out; // CW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
}else if (g.frame_type == Y6_FRAME) {
//Serial.println("Y6_FRAME");
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left
motor_out[CH_2] = ((g.rc_3.radio_out * Y6_scaling) + roll_out + pitch_out); // CCW TOP
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW
//right
motor_out[CH_7] = ((g.rc_3.radio_out * Y6_scaling) - roll_out + pitch_out); // CCW TOP
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // CW
//back
motor_out[CH_8] = ((g.rc_3.radio_out * Y6_scaling) - g.rc_2.pwm_out); // CCW TOP
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW
//yaw
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_7] += g.rc_4.pwm_out; // CCW
motor_out[CH_8] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
}else{
//Serial.print("frame error");
}
// limit output so motors don't stop
motor_out[CH_1] = constrain(motor_out[CH_1], out_min, g.rc_3.radio_max.get());
motor_out[CH_2] = constrain(motor_out[CH_2], out_min, g.rc_3.radio_max.get());
motor_out[CH_3] = constrain(motor_out[CH_3], out_min, g.rc_3.radio_max.get());
motor_out[CH_4] = constrain(motor_out[CH_4], out_min, g.rc_3.radio_max.get());
if ((g.frame_type == HEXAX_FRAME) || (g.frame_type == HEXAP_FRAME) || (g.frame_type == Y6_FRAME)) {
motor_out[CH_7] = constrain(motor_out[CH_7], out_min, g.rc_3.radio_max.get());
motor_out[CH_8] = constrain(motor_out[CH_8], out_min, g.rc_3.radio_max.get());
}
if (num++ > 25){
num = 0;
//Serial.print("kP: ");
//Serial.println(g.pid_stabilize_roll.kP(),3);
//*/
/*
Serial.printf("yaw: %d, lat_e: %ld, lng_e: %ld, \tnlat: %ld, nlng: %ld,\tnrll: %ld, nptc: %ld, \tcx: %.2f, sy: %.2f, \ttber: %ld, \tnber: %ld\n",
(int)(dcm.yaw_sensor / 100),
lat_error,
long_error,
nav_lat,
nav_lon,
nav_roll,
nav_pitch,
cos_yaw_x,
sin_yaw_y,
target_bearing,
nav_bearing);
//*/
/*
gcs_simple.write_byte(control_mode);
//gcs_simple.write_int(motor_out[CH_1]);
//gcs_simple.write_int(motor_out[CH_2]);
//gcs_simple.write_int(motor_out[CH_3]);
//gcs_simple.write_int(motor_out[CH_4]);
gcs_simple.write_int(g.rc_3.servo_out);
gcs_simple.write_int((int)(dcm.yaw_sensor / 100));
gcs_simple.write_int((int)nav_lat);
gcs_simple.write_int((int)nav_lon);
gcs_simple.write_int((int)nav_roll);
gcs_simple.write_int((int)nav_pitch);
//gcs_simple.write_int((int)(cos_yaw_x * 100));
//gcs_simple.write_int((int)(sin_yaw_y * 100));
gcs_simple.write_long(current_loc.lat); //28
gcs_simple.write_long(current_loc.lng); //32
gcs_simple.write_int((int)current_loc.alt); //34
gcs_simple.write_long(next_WP.lat);
gcs_simple.write_long(next_WP.lng);
gcs_simple.write_int((int)next_WP.alt); //44
gcs_simple.write_int((int)(target_bearing / 100));
gcs_simple.write_int((int)(nav_bearing / 100));
gcs_simple.write_int((int)(nav_yaw / 100));
if(altitude_sensor == BARO){
gcs_simple.write_int((int)g.pid_baro_throttle.get_integrator());
}else{
gcs_simple.write_int((int)g.pid_sonar_throttle.get_integrator());
}
gcs_simple.write_int(g.throttle_cruise);
gcs_simple.write_int(g.throttle_cruise);
//24
gcs_simple.flush(10); // Message ID
//*/
//Serial.printf("\n tb %d\n", (int)(target_bearing / 100));
//Serial.printf("\n nb %d\n", (int)(nav_bearing / 100));
//Serial.printf("\n dcm %d\n", (int)(dcm.yaw_sensor / 100));
/*Serial.printf("a %ld, e %ld, i %d, t %d, b %4.2f\n",
current_loc.alt,
altitude_error,
(int)g.pid_baro_throttle.get_integrator(),
nav_throttle,
angle_boost());
*/
}
// Send commands to motors
if(g.rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
if ((g.frame_type == HEXAX_FRAME) || (g.frame_type == Y6_FRAME)) {
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
APM_RC.Force_Out6_Out7();
}
}else{
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
if ((g.frame_type == HEXAX_FRAME) || (g.frame_type == Y6_FRAME)) {
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.Force_Out6_Out7();
}
}
}else{
// our motor is unarmed, we're on the ground
//reset_I();
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_safe = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
if ((g.frame_type == HEXAX_FRAME) || (g.frame_type == Y6_FRAME)){
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
}
// reset I terms of PID controls
//reset_I();
// Initialize yaw command to actual yaw when throttle is down...
g.rc_4.control_in = ToDeg(dcm.yaw);
}
}