ardupilot/libraries/AP_HAL_ChibiOS/Storage.cpp
2020-01-31 19:55:01 +09:00

325 lines
8.2 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "Storage.h"
#include "hwdef/common/flash.h"
#include <AP_Filesystem/AP_Filesystem.h>
#include "sdcard.h"
using namespace ChibiOS;
#ifndef HAL_USE_EMPTY_STORAGE
extern const AP_HAL::HAL& hal;
#ifndef HAL_STORAGE_FILE
// using SKETCHNAME allows the one microSD to be used
// for multiple vehicle types
#define HAL_STORAGE_FILE "/APM/" SKETCHNAME ".stg"
#endif
#ifndef HAL_STORAGE_BACKUP_FILE
// location of backup file
#define HAL_STORAGE_BACKUP_FILE "/APM/" SKETCHNAME ".bak"
#endif
#define STORAGE_FLASH_RETRIES 5
void Storage::_storage_open(void)
{
if (_initialised) {
return;
}
#ifdef USE_POSIX
// if we have failed filesystem init don't try again
if (log_fd == -1) {
return;
}
#endif
_dirty_mask.clearall();
#if HAL_WITH_RAMTRON
using_fram = fram.init();
if (using_fram) {
if (!fram.read(0, _buffer, CH_STORAGE_SIZE)) {
return;
}
_save_backup();
_initialised = true;
return;
}
// allow for FMUv3 with no FRAM chip, fall through to flash storage
#endif
#ifdef STORAGE_FLASH_PAGE
// load from storage backend
_flash_load();
#elif defined(USE_POSIX)
// allow for fallback to microSD based storage
sdcard_retry();
log_fd = AP::FS().open(HAL_STORAGE_FILE, O_RDWR|O_CREAT);
if (log_fd == -1) {
hal.console->printf("open failed of " HAL_STORAGE_FILE "\n");
return;
}
int ret = AP::FS().read(log_fd, _buffer, CH_STORAGE_SIZE);
if (ret < 0) {
hal.console->printf("read failed for " HAL_STORAGE_FILE "\n");
AP::FS().close(log_fd);
log_fd = -1;
return;
}
// pre-fill to full size
if (AP::FS().lseek(log_fd, ret, SEEK_SET) != ret ||
AP::FS().write(log_fd, &_buffer[ret], CH_STORAGE_SIZE-ret) != CH_STORAGE_SIZE-ret) {
hal.console->printf("setup failed for " HAL_STORAGE_FILE "\n");
AP::FS().close(log_fd);
log_fd = -1;
return;
}
using_filesystem = true;
#endif
_save_backup();
_initialised = true;
}
/*
save a backup of storage file if we have microSD available. This is
very handy for diagnostics, and for moving a copy of storage into
SITL for testing
*/
void Storage::_save_backup(void)
{
#ifdef USE_POSIX
// allow for fallback to microSD based storage
sdcard_retry();
int fd = AP::FS().open(HAL_STORAGE_BACKUP_FILE, O_WRONLY|O_CREAT|O_TRUNC);
if (fd != -1) {
AP::FS().write(fd, _buffer, CH_STORAGE_SIZE);
AP::FS().close(fd);
}
#endif
}
/*
mark some lines as dirty. Note that there is no attempt to avoid
the race condition between this code and the _timer_tick() code
below, which both update _dirty_mask. If we lose the race then the
result is that a line is written more than once, but it won't result
in a line not being written.
*/
void Storage::_mark_dirty(uint16_t loc, uint16_t length)
{
if (length == 0) {
return;
}
uint16_t end = loc + length - 1;
for (uint16_t line=loc>>CH_STORAGE_LINE_SHIFT;
line <= end>>CH_STORAGE_LINE_SHIFT;
line++) {
_dirty_mask.set(line);
}
}
void Storage::read_block(void *dst, uint16_t loc, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
return;
}
_storage_open();
memcpy(dst, &_buffer[loc], n);
}
void Storage::write_block(uint16_t loc, const void *src, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
return;
}
if (memcmp(src, &_buffer[loc], n) != 0) {
_storage_open();
memcpy(&_buffer[loc], src, n);
_mark_dirty(loc, n);
}
}
void Storage::_timer_tick(void)
{
if (!_initialised) {
return;
}
if (_dirty_mask.empty()) {
_last_empty_ms = AP_HAL::millis();
return;
}
// write out the first dirty line. We don't write more
// than one to keep the latency of this call to a minimum
uint16_t i;
for (i=0; i<CH_STORAGE_NUM_LINES; i++) {
if (_dirty_mask.get(i)) {
break;
}
}
if (i == CH_STORAGE_NUM_LINES) {
// this shouldn't be possible
return;
}
#if HAL_WITH_RAMTRON
if (using_fram) {
if (fram.write(CH_STORAGE_LINE_SIZE*i, &_buffer[CH_STORAGE_LINE_SIZE*i], CH_STORAGE_LINE_SIZE)) {
_dirty_mask.clear(i);
}
return;
}
#endif
#ifdef USE_POSIX
if (using_filesystem && log_fd != -1) {
uint32_t offset = CH_STORAGE_LINE_SIZE*i;
if (AP::FS().lseek(log_fd, offset, SEEK_SET) != offset) {
return;
}
if (AP::FS().write(log_fd, &_buffer[offset], CH_STORAGE_LINE_SIZE) != CH_STORAGE_LINE_SIZE) {
return;
}
if (AP::FS().fsync(log_fd) != 0) {
return;
}
_dirty_mask.clear(i);
return;
}
#endif
#ifdef STORAGE_FLASH_PAGE
// save to storage backend
_flash_write(i);
#endif
}
/*
load all data from flash
*/
void Storage::_flash_load(void)
{
#ifdef STORAGE_FLASH_PAGE
_flash_page = STORAGE_FLASH_PAGE;
hal.console->printf("Storage: Using flash pages %u and %u\n", _flash_page, _flash_page+1);
if (!_flash.init()) {
AP_HAL::panic("unable to init flash storage");
}
#else
AP_HAL::panic("unable to init storage");
#endif
}
/*
write one storage line. This also updates _dirty_mask.
*/
void Storage::_flash_write(uint16_t line)
{
#ifdef STORAGE_FLASH_PAGE
if (_flash.write(line*CH_STORAGE_LINE_SIZE, CH_STORAGE_LINE_SIZE)) {
// mark the line clean
_dirty_mask.clear(line);
}
#endif
}
/*
callback to write data to flash
*/
bool Storage::_flash_write_data(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length)
{
#ifdef STORAGE_FLASH_PAGE
size_t base_address = hal.flash->getpageaddr(_flash_page+sector);
for (uint8_t i=0; i<STORAGE_FLASH_RETRIES; i++) {
if (hal.flash->write(base_address+offset, data, length)) {
return true;
}
hal.scheduler->delay(1);
}
if (_flash_erase_ok()) {
// we are getting flash write errors while disarmed. Try
// re-writing all of flash
uint32_t now = AP_HAL::millis();
if (now - _last_re_init_ms > 5000) {
_last_re_init_ms = now;
bool ok = _flash.re_initialise();
hal.console->printf("Storage: failed at %u:%u for %u - re-init %u\n",
(unsigned)sector, (unsigned)offset, (unsigned)length, (unsigned)ok);
}
}
return false;
#else
return false;
#endif
}
/*
callback to read data from flash
*/
bool Storage::_flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length)
{
size_t base_address = hal.flash->getpageaddr(_flash_page+sector);
const uint8_t *b = ((const uint8_t *)base_address)+offset;
memcpy(data, b, length);
return true;
}
/*
callback to erase flash sector
*/
bool Storage::_flash_erase_sector(uint8_t sector)
{
for (uint8_t i=0; i<STORAGE_FLASH_RETRIES; i++) {
if (hal.flash->erasepage(_flash_page+sector)) {
return true;
}
hal.scheduler->delay(1);
}
return false;
}
/*
callback to check if erase is allowed
*/
bool Storage::_flash_erase_ok(void)
{
// only allow erase while disarmed
return !hal.util->get_soft_armed();
}
/*
consider storage healthy if we have nothing to write sometime in the
last 2 seconds
*/
bool Storage::healthy(void)
{
return _initialised && AP_HAL::millis() - _last_empty_ms < 2000;
}
#endif // HAL_USE_EMPTY_STORAGE