ardupilot/ArduCopter/mode_acro.cpp

203 lines
8.3 KiB
C++

#include "Copter.h"
#include "mode.h"
#if MODE_ACRO_ENABLED == ENABLED
/*
* Init and run calls for acro flight mode
*/
void ModeAcro::run()
{
// convert the input to the desired body frame rate
float target_roll, target_pitch, target_yaw;
get_pilot_desired_angle_rates(channel_roll->norm_input_dz(), channel_pitch->norm_input_dz(), channel_yaw->norm_input_dz(), target_roll, target_pitch, target_yaw);
if (!motors->armed()) {
// Motors should be Stopped
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
} else if (copter.ap.throttle_zero
|| (copter.air_mode == AirMode::AIRMODE_ENABLED && motors->get_spool_state() == AP_Motors::SpoolState::SHUT_DOWN)) {
// throttle_zero is never true in air mode, but the motors should be allowed to go through ground idle
// in order to facilitate the spoolup block
// Attempting to Land or motors not yet spinning
// if airmode is enabled only an actual landing will spool down the motors
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
} else {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
}
bool limit_throttle_out = false;
switch (motors->get_spool_state()) {
case AP_Motors::SpoolState::SHUT_DOWN:
// Motors Stopped
attitude_control->reset_target_and_rate(true);
attitude_control->reset_rate_controller_I_terms();
limit_throttle_out = true;
break;
case AP_Motors::SpoolState::GROUND_IDLE:
// Landed
attitude_control->reset_target_and_rate();
attitude_control->reset_rate_controller_I_terms_smoothly();
limit_throttle_out = true;
break;
case AP_Motors::SpoolState::THROTTLE_UNLIMITED:
// clear landing flag above zero throttle
if (!motors->limit.throttle_lower) {
set_land_complete(false);
}
break;
case AP_Motors::SpoolState::SPOOLING_UP:
case AP_Motors::SpoolState::SPOOLING_DOWN:
// do nothing
break;
}
// run attitude controller
if (g2.acro_options.get() & uint8_t(AcroOptions::RATE_LOOP_ONLY)) {
attitude_control->input_rate_bf_roll_pitch_yaw_2(target_roll, target_pitch, target_yaw);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw);
}
// output pilot's throttle without angle boost
attitude_control->set_throttle_out(limit_throttle_out ? 0 : get_pilot_desired_throttle(),
false,
copter.g.throttle_filt);
}
bool ModeAcro::init(bool ignore_checks)
{
if (g2.acro_options.get() & uint8_t(AcroOptions::AIR_MODE)) {
disable_air_mode_reset = false;
copter.air_mode = AirMode::AIRMODE_ENABLED;
}
return true;
}
void ModeAcro::exit()
{
if (!disable_air_mode_reset && (g2.acro_options.get() & uint8_t(AcroOptions::AIR_MODE))) {
copter.air_mode = AirMode::AIRMODE_DISABLED;
}
disable_air_mode_reset = false;
}
void ModeAcro::air_mode_aux_changed()
{
disable_air_mode_reset = true;
}
float ModeAcro::throttle_hover() const
{
if (g2.acro_thr_mid > 0) {
return g2.acro_thr_mid;
}
return Mode::throttle_hover();
}
// get_pilot_desired_angle_rates - transform pilot's normalised roll pitch and yaw input into a desired lean angle rates
// inputs are -1 to 1 and the function returns desired angle rates in centi-degrees-per-second
void ModeAcro::get_pilot_desired_angle_rates(float roll_in, float pitch_in, float yaw_in, float &roll_out, float &pitch_out, float &yaw_out)
{
float rate_limit;
Vector3f rate_ef_level_cd, rate_bf_level_cd, rate_bf_request_cd;
// apply circular limit to pitch and roll inputs
float total_in = norm(pitch_in, roll_in);
if (total_in > 1.0) {
float ratio = 1.0 / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// calculate roll, pitch rate requests
// roll expo
rate_bf_request_cd.x = g2.command_model_acro_rp.get_rate() * 100.0 * input_expo(roll_in, g2.command_model_acro_rp.get_expo());
// pitch expo
rate_bf_request_cd.y = g2.command_model_acro_rp.get_rate() * 100.0 * input_expo(pitch_in, g2.command_model_acro_rp.get_expo());
// yaw expo
rate_bf_request_cd.z = g2.command_model_acro_y.get_rate() * 100.0 * input_expo(yaw_in, g2.command_model_acro_y.get_expo());
// calculate earth frame rate corrections to pull the copter back to level while in ACRO mode
if (g.acro_trainer != (uint8_t)Trainer::OFF) {
// get attitude targets
const Vector3f att_target = attitude_control->get_att_target_euler_cd();
// Calculate trainer mode earth frame rate command for roll
int32_t roll_angle = wrap_180_cd(att_target.x);
rate_ef_level_cd.x = -constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;
// Calculate trainer mode earth frame rate command for pitch
int32_t pitch_angle = wrap_180_cd(att_target.y);
rate_ef_level_cd.y = -constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;
// Calculate trainer mode earth frame rate command for yaw
rate_ef_level_cd.z = 0;
// Calculate angle limiting earth frame rate commands
if (g.acro_trainer == (uint8_t)Trainer::LIMITED) {
const float angle_max = copter.aparm.angle_max;
if (roll_angle > angle_max){
rate_ef_level_cd.x += sqrt_controller(angle_max - roll_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_roll_max_cdss(), G_Dt);
}else if (roll_angle < -angle_max) {
rate_ef_level_cd.x += sqrt_controller(-angle_max - roll_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_roll_max_cdss(), G_Dt);
}
if (pitch_angle > angle_max){
rate_ef_level_cd.y += sqrt_controller(angle_max - pitch_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_pitch_max_cdss(), G_Dt);
}else if (pitch_angle < -angle_max) {
rate_ef_level_cd.y += sqrt_controller(-angle_max - pitch_angle, g2.command_model_acro_rp.get_rate() * 100.0 / ACRO_LEVEL_MAX_OVERSHOOT, attitude_control->get_accel_pitch_max_cdss(), G_Dt);
}
}
// convert earth-frame level rates to body-frame level rates
attitude_control->euler_rate_to_ang_vel(attitude_control->get_att_target_euler_cd() * radians(0.01f), rate_ef_level_cd, rate_bf_level_cd);
// combine earth frame rate corrections with rate requests
if (g.acro_trainer == (uint8_t)Trainer::LIMITED) {
rate_bf_request_cd.x += rate_bf_level_cd.x;
rate_bf_request_cd.y += rate_bf_level_cd.y;
rate_bf_request_cd.z += rate_bf_level_cd.z;
}else{
float acro_level_mix = constrain_float(1-float(MAX(MAX(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0), 0, 1)*ahrs.cos_pitch();
// Scale levelling rates by stick input
rate_bf_level_cd = rate_bf_level_cd * acro_level_mix;
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request_cd.x)-fabsf(rate_bf_level_cd.x));
rate_bf_request_cd.x += rate_bf_level_cd.x;
rate_bf_request_cd.x = constrain_float(rate_bf_request_cd.x, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request_cd.y)-fabsf(rate_bf_level_cd.y));
rate_bf_request_cd.y += rate_bf_level_cd.y;
rate_bf_request_cd.y = constrain_float(rate_bf_request_cd.y, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request_cd.z)-fabsf(rate_bf_level_cd.z));
rate_bf_request_cd.z += rate_bf_level_cd.z;
rate_bf_request_cd.z = constrain_float(rate_bf_request_cd.z, -rate_limit, rate_limit);
}
}
// hand back rate request
roll_out = rate_bf_request_cd.x;
pitch_out = rate_bf_request_cd.y;
yaw_out = rate_bf_request_cd.z;
}
#endif