ardupilot/Blimp/Blimp.cpp

385 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Blimp.h"
#define FORCE_VERSION_H_INCLUDE
#include "version.h"
#undef FORCE_VERSION_H_INCLUDE
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
#define SCHED_TASK(func, rate_hz, max_time_micros) SCHED_TASK_CLASS(Blimp, &blimp, func, rate_hz, max_time_micros)
/*
scheduler table for fast CPUs - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called (in hz)
and the maximum time they are expected to take (in microseconds)
*/
const AP_Scheduler::Task Blimp::scheduler_tasks[] = {
SCHED_TASK(rc_loop, 100, 130),
SCHED_TASK(throttle_loop, 50, 75),
SCHED_TASK_CLASS(AP_GPS, &blimp.gps, update, 50, 200),
SCHED_TASK(update_batt_compass, 10, 120),
SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&blimp.g2.rc_channels, read_aux_all, 10, 50),
SCHED_TASK(arm_motors_check, 10, 50),
// SCHED_TASK(auto_disarm_check, 10, 50),
// SCHED_TASK(auto_trim, 10, 75),
SCHED_TASK(update_altitude, 10, 100),
// SCHED_TASK(run_nav_updates, 50, 100),
// SCHED_TASK(update_throttle_hover,100, 90),
SCHED_TASK(three_hz_loop, 3, 75),
SCHED_TASK_CLASS(AP_ServoRelayEvents, &blimp.ServoRelayEvents, update_events, 50, 75),
SCHED_TASK_CLASS(AP_Baro, &blimp.barometer, accumulate, 50, 90),
#if LOGGING_ENABLED == ENABLED
SCHED_TASK(fourhundred_hz_logging,400, 50),
#endif
SCHED_TASK_CLASS(AP_Notify, &blimp.notify, update, 50, 90),
SCHED_TASK(one_hz_loop, 1, 100),
SCHED_TASK(ekf_check, 10, 75),
SCHED_TASK(check_vibration, 10, 50),
// SCHED_TASK(gpsglitch_check, 10, 50),
// SCHED_TASK(landinggear_update, 10, 75),
// SCHED_TASK(standby_update, 100, 75),
// SCHED_TASK(lost_vehicle_check, 10, 50),
SCHED_TASK_CLASS(GCS, (GCS*)&blimp._gcs, update_receive, 400, 180),
SCHED_TASK_CLASS(GCS, (GCS*)&blimp._gcs, update_send, 400, 550),
#if LOGGING_ENABLED == ENABLED
SCHED_TASK(ten_hz_logging_loop, 10, 350),
SCHED_TASK(twentyfive_hz_logging, 25, 110),
SCHED_TASK_CLASS(AP_Logger, &blimp.logger, periodic_tasks, 400, 300),
#endif
SCHED_TASK_CLASS(AP_InertialSensor, &blimp.ins, periodic, 400, 50),
SCHED_TASK_CLASS(AP_Scheduler, &blimp.scheduler, update_logging, 0.1, 75),
SCHED_TASK(compass_cal_update, 100, 100),
SCHED_TASK(accel_cal_update, 10, 100),
// SCHED_TASK_CLASS(AP_TempCalibration, &blimp.g2.temp_calibration, update, 10, 100),
#if STATS_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_Stats, &blimp.g2.stats, update, 1, 100),
#endif
};
void Blimp::get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit)
{
tasks = &scheduler_tasks[0];
task_count = ARRAY_SIZE(scheduler_tasks);
log_bit = MASK_LOG_PM;
}
constexpr int8_t Blimp::_failsafe_priorities[4];
// Main loop - 50hz
void Blimp::fast_loop()
{
// update INS immediately to get current gyro data populated
ins.update();
// run low level rate controllers that only require IMU data
// attitude_control->rate_controller_run();
// send outputs to the motors library immediately
motors_output();
// run EKF state estimator (expensive)
// --------------------
read_AHRS();
// Inertial Nav
// --------------------
read_inertia();
// check if ekf has reset target heading or position
check_ekf_reset();
// run the attitude controllers
update_flight_mode();
// update home from EKF if necessary
update_home_from_EKF();
// check if we've landed or crashed
// Skip for now since Blimp won't land
// update_land_and_crash_detectors();
// log sensor health
if (should_log(MASK_LOG_ANY)) {
Log_Sensor_Health();
}
AP_Vehicle::fast_loop(); //just does gyro fft
}
// get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff
//copied in from Copter's Attitude.cpp
float Blimp::get_non_takeoff_throttle()
{
// return MAX(0,motors->get_throttle_hover()/2.0f);
return 0.0f; //MIR no idle throttle.
}
// start takeoff to given altitude (for use by scripting)
// bool Blimp::start_takeoff(float alt)
// {
// // exit if vehicle is not in Guided mode or Auto-Guided mode
// if (!flightmode->in_guided_mode()) {
// return false;
// }
// if (mode_guided.do_user_takeoff_start(alt * 100.0f)) {
// blimp.set_auto_armed(true);
// return true;
// }
// return false;
// }
// set target location (for use by scripting)
// bool Blimp::set_target_location(const Location& target_loc)
// {
// // exit if vehicle is not in Guided mode or Auto-Guided mode
// if (!flightmode->in_guided_mode()) {
// return false;
// }
// return mode_guided.set_destination(target_loc);
// }
// bool Blimp::set_target_velocity_NED(const Vector3f& vel_ned)
// {
// // exit if vehicle is not in Guided mode or Auto-Guided mode
// if (!flightmode->in_guided_mode()) {
// return false;
// }
// // convert vector to neu in cm
// const Vector3f vel_neu_cms(vel_ned.x * 100.0f, vel_ned.y * 100.0f, -vel_ned.z * 100.0f);
// mode_guided.set_velocity(vel_neu_cms);
// return true;
// }
// bool Blimp::set_target_angle_and_climbrate(float roll_deg, float pitch_deg, float yaw_deg, float climb_rate_ms, bool use_yaw_rate, float yaw_rate_degs)
// {
// // exit if vehicle is not in Guided mode or Auto-Guided mode
// if (!flightmode->in_guided_mode()) {
// return false;
// }
// Quaternion q;
// q.from_euler(radians(roll_deg),radians(pitch_deg),radians(yaw_deg));
// mode_guided.set_angle(q, climb_rate_ms*100, use_yaw_rate, radians(yaw_rate_degs), false);
// return true;
// }
// rc_loops - reads user input from transmitter/receiver
// called at 100hz
void Blimp::rc_loop()
{
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
rc().read_mode_switch();
}
// throttle_loop - should be run at 50 hz
// ---------------------------
void Blimp::throttle_loop()
{
// check auto_armed status
update_auto_armed();
}
// update_batt_compass - read battery and compass
// should be called at 10hz
void Blimp::update_batt_compass(void)
{
// read battery before compass because it may be used for motor interference compensation
battery.read();
if (AP::compass().enabled()) {
// update compass with throttle value - used for compassmot
compass.set_voltage(battery.voltage());
compass.read();
}
}
// Full rate logging of attitude, rate and pid loops
// should be run at 400hz
void Blimp::fourhundred_hz_logging()
{
if (should_log(MASK_LOG_ATTITUDE_FAST) && !blimp.flightmode->logs_attitude()) {
Log_Write_Attitude();
}
}
// ten_hz_logging_loop
// should be run at 10hz
void Blimp::ten_hz_logging_loop()
{
// log attitude data if we're not already logging at the higher rate
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST) && !blimp.flightmode->logs_attitude()) {
Log_Write_Attitude();
}
// log EKF attitude data
if (should_log(MASK_LOG_ATTITUDE_MED) || should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_EKF_POS();
}
if (should_log(MASK_LOG_MOTBATT)) {
Log_Write_MotBatt();
}
if (should_log(MASK_LOG_RCIN)) {
logger.Write_RCIN();
if (rssi.enabled()) {
logger.Write_RSSI();
}
}
if (should_log(MASK_LOG_RCOUT)) {
logger.Write_RCOUT();
}
if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) {
AP::ins().Write_Vibration();
}
}
// twentyfive_hz_logging - should be run at 25hz
void Blimp::twentyfive_hz_logging()
{
#if HIL_MODE != HIL_MODE_DISABLED
// HIL for a blimp needs very fast update of the servo values
gcs().send_message(MSG_SERVO_OUTPUT_RAW);
#endif
#if HIL_MODE == HIL_MODE_DISABLED
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_EKF_POS();
}
if (should_log(MASK_LOG_IMU)) {
AP::ins().Write_IMU();
}
#endif
}
// three_hz_loop - 3.3hz loop
void Blimp::three_hz_loop()
{
// check if we've lost contact with the ground station
failsafe_gcs_check();
}
// one_hz_loop - runs at 1Hz
void Blimp::one_hz_loop()
{
if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(LogDataID::AP_STATE, ap.value);
}
arming.update();
if (!motors->armed()) {
// make it possible to change ahrs orientation at runtime during initial config
ahrs.update_orientation();
// update_using_interlock();
}
// update assigned functions and enable auxiliary servos
SRV_Channels::enable_aux_servos();
AP_Notify::flags.flying = !ap.land_complete;
}
void Blimp::read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before ahrs update
gcs().update();
#endif
// we tell AHRS to skip INS update as we have already done it in fast_loop()
ahrs.update(true);
}
// read baro and log control tuning
void Blimp::update_altitude()
{
// read in baro altitude
read_barometer();
if (should_log(MASK_LOG_CTUN)) {
Log_Write_Control_Tuning();
#if HAL_GYROFFT_ENABLED
gyro_fft.write_log_messages();
#else
write_notch_log_messages();
#endif
}
}
// vehicle specific waypoint info helpers
bool Blimp::get_wp_distance_m(float &distance) const
{
// see GCS_MAVLINK_Blimp::send_nav_controller_output()
distance = flightmode->wp_distance() * 0.01;
return true;
}
// vehicle specific waypoint info helpers
bool Blimp::get_wp_bearing_deg(float &bearing) const
{
// see GCS_MAVLINK_Blimp::send_nav_controller_output()
bearing = flightmode->wp_bearing() * 0.01;
return true;
}
// vehicle specific waypoint info helpers
bool Blimp::get_wp_crosstrack_error_m(float &xtrack_error) const
{
// see GCS_MAVLINK_Blimp::send_nav_controller_output()
xtrack_error = flightmode->crosstrack_error() * 0.01;
return true;
}
/*
constructor for main Blimp class
*/
Blimp::Blimp(void)
: logger(g.log_bitmask),
flight_modes(&g.flight_mode1),
control_mode(Mode::Number::MANUAL),
land_accel_ef_filter(LAND_DETECTOR_ACCEL_LPF_CUTOFF),
rc_throttle_control_in_filter(1.0f),
inertial_nav(ahrs),
param_loader(var_info),
flightmode(&mode_manual)
{
// init sensor error logging flags
sensor_health.baro = true;
sensor_health.compass = true;
}
Blimp blimp;
AP_Vehicle& vehicle = blimp;
AP_HAL_MAIN_CALLBACKS(&blimp);