mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
605 lines
22 KiB
C++
605 lines
22 KiB
C++
/*
|
|
* AP_MotorsHeli.cpp - ArduCopter motors library
|
|
* Code by RandyMackay. DIYDrones.com
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <AP_HAL.h>
|
|
#include "AP_MotorsHeli.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
|
|
|
|
|
// @Param: SV1_POS
|
|
// @DisplayName: Servo 1 Position
|
|
// @Description: This is the angular location of swash servo #1.
|
|
// @Range: -180 180
|
|
// @Units: Degrees
|
|
// @User: Standard
|
|
// @Increment: 1
|
|
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, servo1_pos, -60),
|
|
|
|
// @Param: SV2_POS
|
|
// @DisplayName: Servo 2 Position
|
|
// @Description: This is the angular location of swash servo #2.
|
|
// @Range: -180 180
|
|
// @Units: Degrees
|
|
// @User: Standard
|
|
// @Increment: 1
|
|
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, servo2_pos, 60),
|
|
|
|
// @Param: SV3_POS
|
|
// @DisplayName: Servo 3 Position
|
|
// @Description: This is the angular location of swash servo #3.
|
|
// @Range: -180 180
|
|
// @Units: Degrees
|
|
// @User: Standard
|
|
// @Increment: 1
|
|
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, servo3_pos, 180),
|
|
|
|
// @Param: ROL_MAX
|
|
// @DisplayName: Maximum Roll Angle
|
|
// @Description: This is the maximum allowable roll of the swash plate.
|
|
// @Range: 0 18000
|
|
// @Units: Degrees
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, roll_max, 4500),
|
|
|
|
// @Param: PIT_MAX
|
|
// @DisplayName: Maximum Pitch Angle
|
|
// @Description: This is the maximum allowable pitch of the swash plate.
|
|
// @Range: 0 18000
|
|
// @Units: Degrees
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, pitch_max, 4500),
|
|
|
|
// @Param: COL_MIN
|
|
// @DisplayName: Collective Pitch Minimum
|
|
// @Description: This controls the lowest possible servo position for the swashplate.
|
|
// @Range: 1000 2000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, collective_min, 1250),
|
|
|
|
// @Param: COL_MAX
|
|
// @DisplayName: Collective Pitch Maximum
|
|
// @Description: This controls the highest possible servo position for the swashplate.
|
|
// @Range: 1000 2000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, collective_max, 1750),
|
|
|
|
// @Param: COL_MID
|
|
// @DisplayName: Collective Pitch Mid-Point
|
|
// @Description: This is the swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades).
|
|
// @Range: 1000 2000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, collective_mid, 1500),
|
|
|
|
// @Param: GYR_ENABLE
|
|
// @DisplayName: External Gyro Enabled
|
|
// @Description: Setting this to Enabled(1) will enable an external rudder gyro control which means outputting a gain on channel 7 and using a simpler heading control algorithm. Setting this to Disabled(0) will disable the external gyro gain on channel 7 and revert to a more complex yaw control algorithm.
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Standard
|
|
AP_GROUPINFO("GYR_ENABLE", 9, AP_MotorsHeli, ext_gyro_enabled, 0),
|
|
|
|
// @Param: SWASH_TYPE
|
|
// @DisplayName: Swash Plate Type
|
|
// @Description: Setting this to 0 will configure for a 3-servo CCPM. Setting this to 1 will configure for mechanically mixed "H1".
|
|
// @User: Standard
|
|
AP_GROUPINFO("SWASH_TYPE", 10, AP_MotorsHeli, swash_type, AP_MOTORS_HELI_SWASH_CCPM),
|
|
|
|
// @Param: GYR_GAIN
|
|
// @DisplayName: External Gyro Gain
|
|
// @Description: This is the PWM which is passed to the external gyro when external gyro is enabled.
|
|
// @Range: 1000 2000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, ext_gyro_gain, 1350),
|
|
|
|
// @Param: SV_MAN
|
|
// @DisplayName: Manual Servo Mode
|
|
// @Description: Setting this to Enabled(1) will pass radio inputs directly to servos. Setting this to Disabled(0) will enable Arducopter control of servos. This is only meant to be used by the Mission Planner using swash plate set-up.
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Standard
|
|
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, servo_manual, 0),
|
|
|
|
// @Param: PHANG
|
|
// @DisplayName: Swashplate Phase Angle Compensation
|
|
// @Description: This corrects for phase angle errors of the helicopter main rotor head. For example if pitching the swash forward also induces a roll, that effect can be offset with this parameter.
|
|
// @Range: -90 90
|
|
// @Units: Degrees
|
|
// @User: Advanced
|
|
// @Increment: 1
|
|
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, phase_angle, 0),
|
|
|
|
// @Param: COLYAW
|
|
// @DisplayName: Collective-Yaw Mixing
|
|
// @Description: This is a feed-forward compensation to automatically add rudder input when collective pitch is increased.
|
|
// @Range: 0 5
|
|
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, collective_yaw_effect, 0),
|
|
|
|
// @Param: GOV_SETPOINT
|
|
// @DisplayName: External Motor Governor Setpoint
|
|
// @Description: This is the PWM which is passed to the external motor governor when external governor is enabled.
|
|
// @Range: 1000 2000
|
|
// @Units: PWM
|
|
// @Increment: 10
|
|
// @User: Standard
|
|
AP_GROUPINFO("GOV_SETPOINT", 15, AP_MotorsHeli, ext_gov_setpoint, 1500),
|
|
|
|
// @Param: RSC_MODE
|
|
// @DisplayName: Rotor Speed Control Mode
|
|
// @Description: This sets which ESC control mode is active.
|
|
// @Range: 1 3
|
|
// @User: Standard
|
|
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, rsc_mode, 1),
|
|
|
|
// @Param: RSC_RATE
|
|
// @DisplayName: RSC Ramp Rate
|
|
// @Description: This sets the time the RSC takes to ramp up to full speed (Soft Start).
|
|
// @Range: 0 6000
|
|
// @Units: Seconds
|
|
// @User: Standard
|
|
AP_GROUPINFO("RSC_RATE", 17, AP_MotorsHeli, rsc_ramp_up_rate, 1000),
|
|
|
|
// @Param: FLYBAR_MODE
|
|
// @DisplayName: Flybar Mode Selector
|
|
// @Description: This sets which acro mode is active. (0) is Flybarless (1) is Mechanical Flybar
|
|
// @Range: 0 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("FLYBAR_MODE", 18, AP_MotorsHeli, flybar_mode, 0),
|
|
|
|
// @Param: STAB_COL_MIN
|
|
// @DisplayName: Stabilize Throttle Minimum
|
|
// @Description: This is the minimum collective setpoint in Stabilize Mode
|
|
// @Range: 0 50
|
|
// @Units: 1%
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("STAB_COL_MIN", 19, AP_MotorsHeli, stab_col_min, 0),
|
|
|
|
// @Param: STAB_COL_MAX
|
|
// @DisplayName: Stabilize Throttle Maximum
|
|
// @Description: This is the maximum collective setpoint in Stabilize Mode
|
|
// @Range: 50 100
|
|
// @Units: 1%
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("STAB_COL_MAX", 20, AP_MotorsHeli, stab_col_max, 100),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// init
|
|
void AP_MotorsHeli::Init()
|
|
{
|
|
// set update rate
|
|
set_update_rate(_speed_hz);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsHeli::set_update_rate( uint16_t speed_hz )
|
|
{
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
// setup fast channels
|
|
hal.rcout->set_freq(_motor_to_channel_map[AP_MOTORS_MOT_1], _speed_hz);
|
|
hal.rcout->set_freq(_motor_to_channel_map[AP_MOTORS_MOT_2], _speed_hz);
|
|
hal.rcout->set_freq(_motor_to_channel_map[AP_MOTORS_MOT_3], _speed_hz);
|
|
hal.rcout->set_freq(_motor_to_channel_map[AP_MOTORS_MOT_4], _speed_hz);
|
|
}
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
void AP_MotorsHeli::enable()
|
|
{
|
|
// enable output channels
|
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]); // swash servo 1
|
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]); // swash servo 2
|
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_3]); // swash servo 3
|
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]); // yaw
|
|
hal.rcout->enable_ch(AP_MOTORS_HELI_EXT_GYRO); // for external gyro
|
|
hal.rcout->enable_ch(AP_MOTORS_HELI_EXT_RSC); // for external RSC
|
|
}
|
|
|
|
// output_min - sends minimum values out to the motors
|
|
void AP_MotorsHeli::output_min()
|
|
{
|
|
// move swash to mid
|
|
move_swash(0,0,500,0);
|
|
}
|
|
|
|
// output_armed - sends commands to the motors
|
|
void AP_MotorsHeli::output_armed()
|
|
{
|
|
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
|
|
if( servo_manual == 1 ) {
|
|
_rc_roll->servo_out = _rc_roll->control_in;
|
|
_rc_pitch->servo_out = _rc_pitch->control_in;
|
|
_rc_throttle->servo_out = _rc_throttle->control_in;
|
|
_rc_yaw->servo_out = _rc_yaw->control_in;
|
|
}
|
|
|
|
//static int counter = 0;
|
|
_rc_roll->calc_pwm();
|
|
_rc_pitch->calc_pwm();
|
|
_rc_throttle->calc_pwm();
|
|
_rc_yaw->calc_pwm();
|
|
|
|
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
|
|
|
|
rsc_control();
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsHeli::output_disarmed()
|
|
{
|
|
if(_rc_throttle->control_in > 0) {
|
|
// we have pushed up the throttle
|
|
// remove safety
|
|
_auto_armed = true;
|
|
}
|
|
|
|
// for helis - armed or disarmed we allow servos to move
|
|
output_armed();
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsHeli::output_test()
|
|
{
|
|
int16_t i;
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
|
|
// servo 1
|
|
for( i=0; i<5; i++ ) {
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim - 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 0);
|
|
hal.scheduler->delay(300);
|
|
}
|
|
|
|
// servo 2
|
|
for( i=0; i<5; i++ ) {
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim - 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 0);
|
|
hal.scheduler->delay(300);
|
|
}
|
|
|
|
// servo 3
|
|
for( i=0; i<5; i++ ) {
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim - 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 0);
|
|
hal.scheduler->delay(300);
|
|
}
|
|
|
|
// external gyro
|
|
if( ext_gyro_enabled ) {
|
|
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
|
|
}
|
|
|
|
// servo 4
|
|
for( i=0; i<5; i++ ) {
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim - 100);
|
|
hal.scheduler->delay(300);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 0);
|
|
hal.scheduler->delay(300);
|
|
}
|
|
|
|
// Send minimum values to all motors
|
|
output_min();
|
|
}
|
|
|
|
// reset_swash - free up swash for maximum movements. Used for set-up
|
|
void AP_MotorsHeli::reset_swash()
|
|
{
|
|
// free up servo ranges
|
|
_servo_1->radio_min = 1000;
|
|
_servo_1->radio_max = 2000;
|
|
_servo_2->radio_min = 1000;
|
|
_servo_2->radio_max = 2000;
|
|
_servo_3->radio_min = 1000;
|
|
_servo_3->radio_max = 2000;
|
|
|
|
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform servo control mixing
|
|
|
|
// roll factors
|
|
_rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle));
|
|
_rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle));
|
|
_rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle));
|
|
|
|
// pitch factors
|
|
_pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle));
|
|
_pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle));
|
|
_pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle));
|
|
|
|
// collective factors
|
|
_collectiveFactor[CH_1] = 1;
|
|
_collectiveFactor[CH_2] = 1;
|
|
_collectiveFactor[CH_3] = 1;
|
|
|
|
}else{ //H1 Swashplate, keep servo outputs seperated
|
|
|
|
// roll factors
|
|
_rollFactor[CH_1] = 1;
|
|
_rollFactor[CH_2] = 0;
|
|
_rollFactor[CH_3] = 0;
|
|
|
|
// pitch factors
|
|
_pitchFactor[CH_1] = 0;
|
|
_pitchFactor[CH_2] = 1;
|
|
_pitchFactor[CH_3] = 0;
|
|
|
|
// collective factors
|
|
_collectiveFactor[CH_1] = 0;
|
|
_collectiveFactor[CH_2] = 0;
|
|
_collectiveFactor[CH_3] = 1;
|
|
}
|
|
|
|
// set roll, pitch and throttle scaling
|
|
_roll_scaler = 1.0;
|
|
_pitch_scaler = 1.0;
|
|
_collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0;
|
|
_stab_throttle_scalar = 1.0;
|
|
|
|
// we must be in set-up mode so mark swash as uninitialised
|
|
_swash_initialised = false;
|
|
}
|
|
|
|
// init_swash - initialise the swash plate
|
|
void AP_MotorsHeli::init_swash()
|
|
{
|
|
|
|
// swash servo initialisation
|
|
_servo_1->set_range(0,1000);
|
|
_servo_2->set_range(0,1000);
|
|
_servo_3->set_range(0,1000);
|
|
_servo_4->set_angle(4500);
|
|
|
|
// ensure _coll values are reasonable
|
|
if( collective_min >= collective_max ) {
|
|
collective_min = 1000;
|
|
collective_max = 2000;
|
|
}
|
|
|
|
collective_mid = constrain(collective_mid, collective_min, collective_max);
|
|
|
|
// calculate throttle mid point
|
|
throttle_mid = ((float)(collective_mid-collective_min))/((float)(collective_max-collective_min))*1000.0;
|
|
|
|
// determine roll, pitch and throttle scaling
|
|
_roll_scaler = (float)roll_max/4500.0;
|
|
_pitch_scaler = (float)pitch_max/4500.0;
|
|
_collective_scalar = ((float)(collective_max-collective_min))/1000.0;
|
|
_stab_throttle_scalar = ((float)(stab_col_max - stab_col_min))/100.0;
|
|
|
|
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
|
|
|
|
// roll factors
|
|
_rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle));
|
|
_rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle));
|
|
_rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle));
|
|
|
|
// pitch factors
|
|
_pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle));
|
|
_pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle));
|
|
_pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle));
|
|
|
|
// collective factors
|
|
_collectiveFactor[CH_1] = 1;
|
|
_collectiveFactor[CH_2] = 1;
|
|
_collectiveFactor[CH_3] = 1;
|
|
|
|
}else{ //H1 Swashplate, keep servo outputs seperated
|
|
|
|
// roll factors
|
|
_rollFactor[CH_1] = 1;
|
|
_rollFactor[CH_2] = 0;
|
|
_rollFactor[CH_3] = 0;
|
|
|
|
// pitch factors
|
|
_pitchFactor[CH_1] = 0;
|
|
_pitchFactor[CH_2] = 1;
|
|
_pitchFactor[CH_3] = 0;
|
|
|
|
// collective factors
|
|
_collectiveFactor[CH_1] = 0;
|
|
_collectiveFactor[CH_2] = 0;
|
|
_collectiveFactor[CH_3] = 1;
|
|
}
|
|
|
|
// servo min/max values
|
|
_servo_1->radio_min = 1000;
|
|
_servo_1->radio_max = 2000;
|
|
_servo_2->radio_min = 1000;
|
|
_servo_2->radio_max = 2000;
|
|
_servo_3->radio_min = 1000;
|
|
_servo_3->radio_max = 2000;
|
|
|
|
// mark swash as initialised
|
|
_swash_initialised = true;
|
|
}
|
|
|
|
//
|
|
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
|
// - expected ranges:
|
|
// roll : -4500 ~ 4500
|
|
// pitch: -4500 ~ 4500
|
|
// collective: 0 ~ 1000
|
|
// yaw: -4500 ~ 4500
|
|
//
|
|
void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
|
|
{
|
|
int16_t yaw_offset = 0;
|
|
int16_t coll_out_scaled;
|
|
|
|
if( servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
|
|
// check if we need to free up the swash
|
|
if( _swash_initialised ) {
|
|
reset_swash();
|
|
}
|
|
coll_out_scaled = coll_in * _collective_scalar + _rc_throttle->radio_min - 1000;
|
|
}else{ // regular flight mode
|
|
|
|
// check if we need to reinitialise the swash
|
|
if( !_swash_initialised ) {
|
|
init_swash();
|
|
}
|
|
|
|
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
|
|
// across the input range instead of stopping when the input hits the constrain value
|
|
// these calculations are based on an assumption of the user specified roll_max and pitch_max
|
|
// coming into this equation at 4500 or less, and based on the original assumption of the
|
|
// total _servo_x.servo_out range being -4500 to 4500.
|
|
roll_out = roll_out * _roll_scaler;
|
|
roll_out = constrain(roll_out, (int16_t)-roll_max, (int16_t)roll_max);
|
|
|
|
pitch_out = pitch_out * _pitch_scaler;
|
|
pitch_out = constrain(pitch_out, (int16_t)-pitch_max, (int16_t)pitch_max);
|
|
|
|
// scale collective pitch
|
|
coll_out = constrain(coll_in, 0, 1000);
|
|
if (stab_throttle){
|
|
coll_out = coll_out * _stab_throttle_scalar + stab_col_min*10;
|
|
}
|
|
coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000;
|
|
|
|
// rudder feed forward based on collective
|
|
if( !ext_gyro_enabled ) {
|
|
yaw_offset = collective_yaw_effect * abs(coll_out_scaled - throttle_mid);
|
|
}
|
|
}
|
|
|
|
// swashplate servos
|
|
_servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500);
|
|
_servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500);
|
|
if( swash_type == AP_MOTORS_HELI_SWASH_H1 ) {
|
|
_servo_1->servo_out += 500;
|
|
_servo_2->servo_out += 500;
|
|
}
|
|
_servo_3->servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3->radio_trim-1500);
|
|
_servo_4->servo_out = yaw_out + yaw_offset;
|
|
|
|
// use servo_out to calculate pwm_out and radio_out
|
|
_servo_1->calc_pwm();
|
|
_servo_2->calc_pwm();
|
|
_servo_3->calc_pwm();
|
|
_servo_4->calc_pwm();
|
|
|
|
// actually move the servos
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_out);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_out);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_out);
|
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_out);
|
|
|
|
// to be compatible with other frame types
|
|
motor_out[AP_MOTORS_MOT_1] = _servo_1->radio_out;
|
|
motor_out[AP_MOTORS_MOT_2] = _servo_2->radio_out;
|
|
motor_out[AP_MOTORS_MOT_3] = _servo_3->radio_out;
|
|
motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out;
|
|
|
|
// output gyro value
|
|
if( ext_gyro_enabled ) {
|
|
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
|
|
}
|
|
}
|
|
|
|
static long map(long x, long in_min, long in_max, long out_min, long out_max)
|
|
{
|
|
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
|
|
}
|
|
|
|
|
|
void AP_MotorsHeli::rsc_control() {
|
|
switch ( rsc_mode ) {
|
|
|
|
case AP_MOTORSHELI_RSC_MODE_CH8_PASSTHROUGH:
|
|
if( armed() && (_rc_8->radio_in > (_rc_8->radio_min + 10))) {
|
|
if (rsc_ramp < rsc_ramp_up_rate) {
|
|
rsc_ramp++;
|
|
rsc_output = map(rsc_ramp, 0, rsc_ramp_up_rate, _rc_8->radio_min, _rc_8->radio_in);
|
|
} else {
|
|
rsc_output = _rc_8->radio_in;
|
|
}
|
|
} else {
|
|
rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
|
|
if (rsc_ramp < 0) {
|
|
rsc_ramp = 0;
|
|
}
|
|
rsc_output = _rc_8->radio_min;
|
|
}
|
|
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, rsc_output);
|
|
break;
|
|
|
|
case AP_MOTORSHELI_RSC_MODE_EXT_GOV:
|
|
|
|
if( armed() && _rc_8->control_in > 100) {
|
|
if (rsc_ramp < rsc_ramp_up_rate) {
|
|
rsc_ramp++;
|
|
rsc_output = map(rsc_ramp, 0, rsc_ramp_up_rate, 1000, ext_gov_setpoint);
|
|
} else {
|
|
rsc_output = ext_gov_setpoint;
|
|
}
|
|
} else {
|
|
rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
|
|
if (rsc_ramp < 0) {
|
|
rsc_ramp = 0;
|
|
}
|
|
rsc_output = 1000; //Just to be sure RSC output is 0
|
|
}
|
|
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, rsc_output);
|
|
break;
|
|
|
|
// case 3: // Open Loop ESC Control
|
|
//
|
|
// coll_scaled = _motors->coll_out_scaled + 1000;
|
|
// if(coll_scaled <= _motors->collective_mid){
|
|
// esc_ol_output = map(coll_scaled, _motors->collective_min, _motors->collective_mid, esc_out_low, esc_out_mid); // Bottom half of V-curve
|
|
// } else if (coll_scaled > _motors->collective_mid){
|
|
// esc_ol_output = map(coll_scaled, _motors->collective_mid, _motors->collective_max, esc_out_mid, esc_out_high); // Top half of V-curve
|
|
// } else { esc_ol_output = 1000; } // Just in case.
|
|
//
|
|
// if(_motors->armed() && _rc_throttle->control_in > 10){
|
|
// if (ext_esc_ramp < ext_esc_ramp_up){
|
|
// ext_esc_ramp++;
|
|
// ext_esc_output = map(ext_esc_ramp, 0, ext_esc_ramp_up, 1000, esc_ol_output);
|
|
// } else {
|
|
// ext_esc_output = esc_ol_output;
|
|
// }
|
|
// } else {
|
|
// ext_esc_ramp = 0; //Return ESC Ramp to 0
|
|
// ext_esc_output = 1000; //Just to be sure ESC output is 0
|
|
//}
|
|
// hal.rcout->write(AP_MOTORS_HELI_EXT_ESC, ext_esc_output);
|
|
// break;
|
|
|
|
|
|
default:
|
|
break;
|
|
}
|
|
};
|