ardupilot/libraries/AP_HAL/utility/RingBuffer.cpp
Leandro Pereira fbefe32017 AP_HAL: Add method to reserve space in the ring buffer
Adds a method called `reserve()`, that will take a ByteBuffer::IoVec
array of at least two elements, and return the number of elements
filled out.  0 will be returned if `len` is over the total space of
the buffer; 1 will be returned if there's enough contiguous bytes in
the buffer; 2 will be returned if there are two non-contiguous blocks
of memory.

This method is suitable to be used with POSIX system calls such as
readv(), and is an optimization to not require temporary memory copies
while reading from a file descriptor.

Also modify the write() method to use reserve(), so that similar checks
are performed only in one place.
2016-07-08 13:10:16 -03:00

200 lines
3.6 KiB
C++

#include "RingBuffer.h"
#include <stdlib.h>
#include <string.h>
/*
implement a simple ringbuffer of bytes
*/
ByteBuffer::ByteBuffer(uint32_t _size)
{
size = _size;
buf = new uint8_t[size];
head = tail = 0;
}
ByteBuffer::~ByteBuffer(void)
{
delete [] buf;
}
/*
caller is responsible for locking in set_size()
*/
void ByteBuffer::set_size(uint32_t _size)
{
uint8_t *oldbuf = buf;
head = tail = 0;
size = _size;
buf = new uint8_t[size];
delete [] oldbuf;
}
uint32_t ByteBuffer::available(void) const
{
uint32_t _tail;
return ((head > (_tail=tail))? (size - head) + _tail: _tail - head);
}
uint32_t ByteBuffer::space(void) const
{
uint32_t _head;
return (((_head=head) > tail)?(_head - tail) - 1:((size - tail) + _head) - 1);
}
bool ByteBuffer::empty(void) const
{
return head == tail;
}
uint32_t ByteBuffer::write(const uint8_t *data, uint32_t len)
{
ByteBuffer::IoVec vec[2];
const auto n_vec = reserve(vec, len);
uint32_t ret = 0;
for (int i = 0; i < n_vec; i++) {
memcpy(vec[i].data, data + ret, vec[i].len);
ret += vec[i].len;
}
return ret;
}
/*
update bytes at the read pointer. Used to update an object without
popping it
*/
bool ByteBuffer::update(const uint8_t *data, uint32_t len)
{
if (len > available()) {
return false;
}
// perform as two memcpy calls
uint32_t n = size - head;
if (n > len) {
n = len;
}
memcpy(&buf[head], data, n);
data += n;
if (len > n) {
memcpy(&buf[0], data, len-n);
}
return true;
}
bool ByteBuffer::advance(uint32_t n)
{
if (n > available()) {
return false;
}
head = (head + n) % size;
return true;
}
int ByteBuffer::peekiovec(ByteBuffer::IoVec iovec[2], uint32_t len)
{
if (len > available()) {
len = available();
}
if (len == 0) {
return 0;
}
uint32_t n;
auto b = readptr(n);
if (n > len) {
n = len;
}
iovec[0].data = const_cast<uint8_t *>(b);
iovec[0].len = n;
if (len > n) {
iovec[1].data = buf;
iovec[1].len = len - n;
return 2;
}
return 1;
}
/*
read len bytes without advancing the read pointer
*/
uint32_t ByteBuffer::peekbytes(uint8_t *data, uint32_t len)
{
ByteBuffer::IoVec vec[2];
const auto n_vec = peekiovec(vec, len);
uint32_t ret = 0;
for (int i = 0; i < n_vec; i++) {
memcpy(data + ret, vec[i].data, vec[i].len);
ret += vec[i].len;
}
return ret;
}
int ByteBuffer::reserve(ByteBuffer::IoVec iovec[2], uint32_t len)
{
if (len > space()) {
len = space();
}
if (!len) {
return 0;
}
iovec[0].data = &buf[tail];
if (tail+len <= size) {
iovec[0].len = len;
} else {
auto n = size - tail;
if (n > len) {
n = len;
}
iovec[0].len = n;
tail = (tail + n) % size;
n = len - n;
if (n > 0) {
iovec[1].data = &buf[tail];
iovec[1].len = n;
return 2;
}
}
return 1;
}
uint32_t ByteBuffer::read(uint8_t *data, uint32_t len)
{
uint32_t ret = peekbytes(data, len);
advance(ret);
return ret;
}
/*
return a pointer to a contiguous read buffer
*/
const uint8_t *ByteBuffer::readptr(uint32_t &available_bytes)
{
available_bytes = available();
if (available_bytes == 0) {
return nullptr;
}
if (head+available_bytes > size) {
available_bytes = size - head;
}
return &buf[head];
}
int16_t ByteBuffer::peek(uint32_t ofs) const
{
if (ofs >= available()) {
return -1;
}
return buf[(head+ofs)%size];
}