ardupilot/ArduCopterMega/system.pde
DrZiplok facda81c5a Compilation fixes per request
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1671 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-02-17 09:36:33 +00:00

428 lines
12 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
// Functions called from the top-level menu
extern int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
extern int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
extern int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"help", main_menu_help}
};
// Create the top-level menu object.
MENU(main_menu, "ArduPilotMega", main_menu_commands);
void init_ardupilot()
{
byte last_log_num;
int last_log_start;
int last_log_end;
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the console's use as a logging device, optionally as the GPS port when
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
//
// XXX This could be optimised to reduce the buffer sizes in the cases
// where they are not otherwise required.
//
Serial.begin(SERIAL0_BAUD, 128, 128);
// GPS serial port.
//
// Not used if the IMU/X-Plane GPS is in use.
//
// XXX currently the EM406 (SiRF receiver) is nominally configured
// at 57600, however it's not been supported to date. We should
// probably standardise on 38400.
//
// XXX the 128 byte receive buffer may be too small for NMEA, depending
// on the message set configured.
//
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
Serial1.begin(38400, 128, 16);
#endif
// Telemetry port.
//
// Not used if telemetry is going to the console.
//
// XXX for unidirectional protocols, we could (should) minimize
// the receive buffer, and the transmit buffer could also be
// shrunk for protocols that don't send large messages.
//
#if GCS_PORT == 3
Serial3.begin(SERIAL3_BAUD, 128, 128);
#endif
Serial.printf_P(PSTR("\n\n"
"Init ArduCopterMega 1.0.2 Public Alpha\n\n"
#if TELEMETRY_PORT == 3
"Telemetry is on the xbee port\n"
#endif
"freeRAM: %d\n"),freeRAM());
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
Serial.printf_P(PSTR("\n\nEEPROM format version %d not compatible with this firmware (requires %d)"
"\n\nForcing complete parameter reset..."),
g.format_version.get(), Parameters::k_format_version);
// erase all parameters
AP_Var::erase_all();
// save the new format version
g.format_version.set_and_save(Parameters::k_format_version);
Serial.println_P(PSTR("done."));
} else {
// Load all auto-loaded EEPROM variables
AP_Var::load_all();
}
//read_EEPROM_startup(); // Read critical config information to start
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
init_camera();
adc.Init(); // APM ADC library initialization
APM_BMP085.Init(); // APM Abs Pressure sensor initialization
DataFlash.Init(); // DataFlash log initialization
g_gps = &GPS;
g_gps->init();
if(g.compass_enabled)
init_compass();
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
pinMode(PUSHBUTTON_PIN, INPUT); // unused
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (digitalRead(SLIDE_SWITCH_PIN) == 0) {
digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED
Serial.printf_P(PSTR("\n"
"Entering interactive setup mode...\n"
"\n"
"If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n"
"Type 'help' to list commands, 'exit' to leave a submenu.\n"
"Visit the 'setup' menu for first-time configuration.\n"));
for (;;) {
Serial.printf_P(PSTR("\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
main_menu.run();
}
}
if(g.log_bitmask > 0){
// Here we will check on the length of the last log
// We don't want to create a bunch of little logs due to powering on and off
last_log_num = eeprom_read_byte((uint8_t *) EE_LAST_LOG_NUM);
last_log_start = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(last_log_num - 1) * 0x02));
last_log_end = eeprom_read_word((uint16_t *) EE_LAST_LOG_PAGE);
if(last_log_num == 0) {
// The log space is empty. Start a write session on page 1
DataFlash.StartWrite(1);
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (1));
eeprom_write_word((uint16_t *) EE_LOG_1_START, (1));
} else if (last_log_end <= last_log_start + 10) {
// The last log is small. We consider it junk. Overwrite it.
DataFlash.StartWrite(last_log_start);
} else {
// The last log is valid. Start a new log
if(last_log_num >= 19) {
Serial.println("Number of log files exceeds max. Log 19 will be overwritten.");
last_log_num --;
}
DataFlash.StartWrite(last_log_end + 1);
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (last_log_num + 1));
eeprom_write_word((uint16_t *) (EE_LOG_1_START+(last_log_num)*0x02), (last_log_end + 1));
}
}
// read in the flight switches
//update_servo_switches();
//Serial.print("GROUND START");
send_message(SEVERITY_LOW,"GROUND START");
startup_ground();
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
// set the correct flight mode
// ---------------------------
reset_control_switch();
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
void startup_ground(void)
{
/*
read_radio();
while (g.rc_3.control_in > 0){
delay(20);
read_radio();
APM_RC.OutputCh(CH_1, g.rc_3.radio_in);
APM_RC.OutputCh(CH_2, g.rc_3.radio_in);
APM_RC.OutputCh(CH_3, g.rc_3.radio_in);
APM_RC.OutputCh(CH_4, g.rc_3.radio_in);
Serial.println("*")
}
*/
// read the radio to set trims
// ---------------------------
trim_radio();
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
#if(GROUND_START_DELAY > 0)
send_message(SEVERITY_LOW,"With Delay");
delay(GROUND_START_DELAY * 1000);
#endif
// Output waypoints for confirmation
// --------------------------------
for(int i = 1; i < g.waypoint_total + 1; i++) {
gcs.send_message(MSG_COMMAND_LIST, i);
}
//IMU ground start
//------------------------
init_pressure_ground();
// Warm up and read Gyro offsets
// -----------------------------
imu.init_gyro();
// Save the settings for in-air restart
// ------------------------------------
save_EEPROM_groundstart();
// initialize commands
// -------------------
init_commands();
send_message(SEVERITY_LOW,"\n\n Ready to FLY.");
}
void set_mode(byte mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
control_mode = mode;
control_mode = constrain(control_mode, 0, NUM_MODES - 1);
// used to stop fly_aways
if(g.rc_1.control_in == 0){
// we are on the ground is this is true
// disarm motors temp
motor_auto_safe = false;
}
//send_message(SEVERITY_LOW,"control mode");
//Serial.printf("set mode: %d old: %d\n", (int)mode, (int)control_mode);
switch(control_mode)
{
case ACRO:
break;
case STABILIZE:
set_current_loc_here();
break;
case ALT_HOLD:
set_current_loc_here();
break;
case AUTO:
update_auto();
break;
case POSITION_HOLD:
set_current_loc_here();
break;
case RTL:
return_to_launch();
break;
case TAKEOFF:
break;
case LAND:
break;
default:
break;
}
// output control mode to the ground station
send_message(MSG_HEARTBEAT);
if (g.log_bitmask & MASK_LOG_MODE)
Log_Write_Mode(control_mode);
}
void set_failsafe(boolean mode)
{
// only act on changes
// -------------------
if(failsafe != mode){
// store the value so we don't trip the gate twice
// -----------------------------------------------
failsafe = mode;
if (failsafe == false){
// We're back in radio contact
// ---------------------------
// re-read the switch so we can return to our preferred mode
reset_control_switch();
// Reset control integrators
// ---------------------
reset_I();
}else{
// We've lost radio contact
// ------------------------
// nothing to do right now
}
// Let the user know what's up so they can override the behavior
// -------------------------------------------------------------
failsafe_event();
}
}
void update_GPS_light(void)
{
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
// ---------------------------------------------------------------------
if(g_gps->fix == 0){
GPS_light = !GPS_light;
if(GPS_light){
digitalWrite(C_LED_PIN, HIGH);
}else{
digitalWrite(C_LED_PIN, LOW);
}
}else{
if(!GPS_light){
GPS_light = true;
digitalWrite(C_LED_PIN, HIGH);
}
}
if(motor_armed == true){
motor_light = !motor_light;
// blink
if(motor_light){
digitalWrite(A_LED_PIN, HIGH);
}else{
digitalWrite(A_LED_PIN, LOW);
}
}else{
if(!motor_light){
motor_light = true;
digitalWrite(A_LED_PIN, HIGH);
}
}
}
void resetPerfData(void) {
/*
mainLoop_count = 0;
G_Dt_max = 0;
gyro_sat_count = 0;
adc_constraints = 0;
renorm_sqrt_count = 0;
renorm_blowup_count = 0;
gps_fix_count = 0;
perf_mon_timer = millis();
*/
}
void
init_compass()
{
dcm.set_compass(&compass);
compass.init();
compass.set_orientation(MAGORIENTATION); // set compass's orientation on aircraft
compass.set_offsets(mag_offset_x, mag_offset_y, mag_offset_z); // set offsets to account for surrounding interference
compass.set_declination(ToRad(mag_declination)); // set local difference between magnetic north and true north
}
/* This function gets the current value of the heap and stack pointers.
* The stack pointer starts at the top of RAM and grows downwards. The heap pointer
* starts just above the static variables etc. and grows upwards. SP should always
* be larger than HP or you'll be in big trouble! The smaller the gap, the more
* careful you need to be. Julian Gall 6 - Feb - 2009.
*/
unsigned long freeRAM() {
uint8_t * heapptr, * stackptr;
stackptr = (uint8_t *)malloc(4); // use stackptr temporarily
heapptr = stackptr; // save value of heap pointer
free(stackptr); // free up the memory again (sets stackptr to 0)
stackptr = (uint8_t *)(SP); // save value of stack pointer
return stackptr - heapptr;
}