ardupilot/ArduCopter/system.cpp
2016-10-13 20:21:07 +09:00

453 lines
13 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
#include "version.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// This is the help function
int8_t Copter::main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf("Commands:\n"
" logs\n"
" setup\n"
" test\n"
" reboot\n"
"\n");
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] = {
// command function called
// ======= ===============
{"logs", MENU_FUNC(process_logs)},
{"setup", MENU_FUNC(setup_mode)},
{"test", MENU_FUNC(test_mode)},
{"reboot", MENU_FUNC(reboot_board)},
{"help", MENU_FUNC(main_menu_help)},
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
int8_t Copter::reboot_board(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
void Copter::run_cli(AP_HAL::UARTDriver *port)
{
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
// disable main_loop failsafe
failsafe_disable();
// cut the engines
if(motors.armed()) {
motors.armed(false);
motors.output();
}
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void mavlink_delay_cb_static()
{
copter.mavlink_delay_cb();
}
static void failsafe_check_static()
{
copter.failsafe_check();
}
void Copter::init_ardupilot()
{
if (!hal.gpio->usb_connected()) {
// USB is not connected, this means UART0 may be a Xbee, with
// its darned bricking problem. We can't write to it for at
// least one second after powering up. Simplest solution for
// now is to delay for 1 second. Something more elegant may be
// added later
delay(1000);
}
// initialise serial port
serial_manager.init_console();
// init vehicle capabilties
init_capabilities();
cliSerial->printf("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n",
(unsigned)hal.util->available_memory());
//
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
//
report_version();
// load parameters from EEPROM
load_parameters();
GCS_MAVLINK::set_dataflash(&DataFlash);
// initialise serial ports
serial_manager.init();
// setup first port early to allow BoardConfig to report errors
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
BoardConfig.init();
// init EPM cargo gripper
#if EPM_ENABLED == ENABLED
epm.init();
#endif
// initialise notify system
// disable external leds if epm is enabled because of pin conflict on the APM
notify.init(true);
// initialise battery monitor
battery.init();
// Init RSSI
rssi.init();
barometer.init();
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
ap.usb_connected = true;
check_usb_mux();
// setup telem slots with serial ports
for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
}
#if FRSKY_TELEM_ENABLED == ENABLED
// setup frsky, and pass a number of parameters to the library
frsky_telemetry.init(serial_manager, FIRMWARE_STRING " " FRAME_CONFIG_STRING,
FRAME_MAV_TYPE,
&g.fs_batt_voltage, &g.fs_batt_mah, &ap.value);
#endif
// identify ourselves correctly with the ground station
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
// update motor interlock state
update_using_interlock();
#if FRAME_CONFIG == HELI_FRAME
// trad heli specific initialisation
heli_init();
#endif
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up motors and output to escs
// initialise which outputs Servo and Relay events can use
ServoRelayEvents.set_channel_mask(~motors.get_motor_mask());
relay.init();
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// Do GPS init
gps.init(&DataFlash, serial_manager);
if(g.compass_enabled)
init_compass();
#if OPTFLOW == ENABLED
// make optflow available to AHRS
ahrs.set_optflow(&optflow);
#endif
// init Location class
Location_Class::set_ahrs(&ahrs);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
Location_Class::set_terrain(&terrain);
wp_nav.set_terrain(&terrain);
#endif
wp_nav.set_avoidance(&avoid);
attitude_control.parameter_sanity_check();
pos_control.set_dt(MAIN_LOOP_SECONDS);
// init the optical flow sensor
init_optflow();
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init(&DataFlash, serial_manager);
#endif
#if PRECISION_LANDING == ENABLED
// initialise precision landing
init_precland();
#endif
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
#if CLI_ENABLED == ENABLED
if (g.cli_enabled) {
const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
cliSerial->println(msg);
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
gcs[1].get_uart()->println(msg);
}
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
gcs[2].get_uart()->println(msg);
}
}
#endif // CLI_ENABLED
#if HIL_MODE != HIL_MODE_DISABLED
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
delay(1000);
}
// set INS to HIL mode
ins.set_hil_mode();
#endif
// read Baro pressure at ground
//-----------------------------
init_barometer(true);
// initialise rangefinder
init_rangefinder();
// init proximity sensor
init_proximity();
// initialise AP_RPM library
rpm_sensor.init();
// initialise mission library
mission.init();
// initialise the flight mode and aux switch
// ---------------------------
reset_control_switch();
init_aux_switches();
startup_INS_ground();
// set landed flags
set_land_complete(true);
set_land_complete_maybe(true);
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
// enable CPU failsafe
failsafe_enable();
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
ins.set_dataflash(&DataFlash);
cliSerial->print("\nReady to FLY ");
// flag that initialisation has completed
ap.initialised = true;
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
void Copter::startup_INS_ground()
{
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
// Warm up and calibrate gyro offsets
ins.init(scheduler.get_loop_rate_hz());
// reset ahrs including gyro bias
ahrs.reset();
}
// calibrate gyros - returns true if successfully calibrated
bool Copter::calibrate_gyros()
{
// gyro offset calibration
copter.ins.init_gyro();
// reset ahrs gyro bias
if (copter.ins.gyro_calibrated_ok_all()) {
copter.ahrs.reset_gyro_drift();
return true;
}
return false;
}
// position_ok - returns true if the horizontal absolute position is ok and home position is set
bool Copter::position_ok()
{
// return false if ekf failsafe has triggered
if (failsafe.ekf) {
return false;
}
// check ekf position estimate
return (ekf_position_ok() || optflow_position_ok());
}
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set
bool Copter::ekf_position_ok()
{
if (!ahrs.have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal position
if (!motors.armed()) {
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
} else {
// once armed we require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
}
// optflow_position_ok - returns true if optical flow based position estimate is ok
bool Copter::optflow_position_ok()
{
#if OPTFLOW != ENABLED
return false;
#else
// return immediately if optflow is not enabled or EKF not used
if (!optflow.enabled() || !ahrs.have_inertial_nav()) {
return false;
}
// get filter status from EKF
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal relative position
if (!motors.armed()) {
return (filt_status.flags.pred_horiz_pos_rel);
} else {
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
}
#endif
}
// update_auto_armed - update status of auto_armed flag
void Copter::update_auto_armed()
{
// disarm checks
if(ap.auto_armed){
// if motors are disarmed, auto_armed should also be false
if(!motors.armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if(mode_has_manual_throttle(control_mode) && ap.throttle_zero && !failsafe.radio) {
set_auto_armed(false);
}
#if FRAME_CONFIG == HELI_FRAME
// if helicopters are on the ground, and the motor is switched off, auto-armed should be false
// so that rotor runup is checked again before attempting to take-off
if(ap.land_complete && !motors.rotor_runup_complete()) {
set_auto_armed(false);
}
#endif // HELI_FRAME
}else{
// arm checks
#if FRAME_CONFIG == HELI_FRAME
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true
if(motors.armed() && !ap.throttle_zero && motors.rotor_runup_complete()) {
set_auto_armed(true);
}
#else
// if motors are armed and throttle is above zero auto_armed should be true
// if motors are armed and we are in throw mode, then auto_ermed should be true
if(motors.armed() && (!ap.throttle_zero || control_mode == THROW)) {
set_auto_armed(true);
}
#endif // HELI_FRAME
}
}
void Copter::check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == ap.usb_connected) {
return;
}
// the user has switched to/from the telemetry port
ap.usb_connected = usb_check;
}
/*
should we log a message type now?
*/
bool Copter::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
bool ret = motors.armed() || DataFlash.log_while_disarmed();
if (ret && !DataFlash.logging_started() && !in_log_download) {
start_logging();
}
return ret;
#else
return false;
#endif
}