ardupilot/APMrover2/Rover.h
2015-05-21 07:48:47 +10:00

420 lines
13 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
main Rover class, containing all vehicle specific state
*/
class Rover {
public:
Rover(void);
// public member functions
void setup(void);
void loop(void);
private:
AP_HAL::BetterStream* cliSerial;
// must be the first AP_Param variable declared to ensure its
// constructor runs before the constructors of the other AP_Param
// variables
AP_Param param_loader;
// the rate we run the main loop at
const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_50HZ;
// all settable parameters
Parameters g;
// main loop scheduler
AP_Scheduler scheduler;
// mapping between input channels
RCMapper rcmap;
// board specific config
AP_BoardConfig BoardConfig;
// primary control channels
RC_Channel *channel_steer;
RC_Channel *channel_throttle;
RC_Channel *channel_learn;
// DataFlash
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
DataFlash_APM1 DataFlash;
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM2
DataFlash_APM2 DataFlash;
#elif defined(HAL_BOARD_LOG_DIRECTORY)
DataFlash_File DataFlash(HAL_BOARD_LOG_DIRECTORY);
#else
DataFlash_Empty DataFlash;
#endif
bool in_log_download;
// sensor drivers
AP_GPS gps;
AP_Baro barometer;
Compass compass;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
AP_ADC_ADS7844 apm1_adc;
#endif
AP_InertialSensor ins;
RangeFinder sonar;
// flight modes convenience array
AP_Int8 *modes;
// Inertial Navigation EKF
#if AP_AHRS_NAVEKF_AVAILABLE
AP_AHRS_NavEKF ahrs;
#else
AP_AHRS_DCM ahrs;
#endif
AP_L1_Control L1_controller;
// selected navigation controller
AP_Navigation *nav_controller;
// steering controller
AP_SteerController steerController;
// Mission library
AP_Mission mission;
OpticalFlow optflow;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL sitl;
#endif
// GCS handling
AP_SerialManager serial_manager;
const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS;
GCS_MAVLINK gcs[MAVLINK_COMM_NUM_BUFFERS];
// a pin for reading the receiver RSSI voltage. The scaling by 0.25
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink
AP_HAL::AnalogSource *rssi_analog_source;
// relay support
AP_Relay relay;
AP_ServoRelayEvents ServoRelayEvents;
// Camera
#if CAMERA == ENABLED
AP_Camera camera;
#endif
// The rover's current location
struct Location current_loc;
// Camera/Antenna mount tracking and stabilisation stuff
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
AP_Mount camera_mount;
#endif
// if USB is connected
bool usb_connected;
// Radio
// This is the state of the flight control system
// There are multiple states defined such as MANUAL, FBW-A, AUTO
enum mode control_mode;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
uint8_t oldSwitchPosition;
// These are values received from the GCS if the user is using GCS joystick
// control and are substituted for the values coming from the RC radio
int16_t rc_override[8];
// A flag if GCS joystick control is in use
bool rc_override_active;
// Failsafe
// A tracking variable for type of failsafe active
// Used for failsafe based on loss of RC signal or GCS signal. See
// FAILSAFE_EVENT_*
static struct {
uint8_t bits;
uint32_t rc_override_timer;
uint32_t start_time;
uint8_t triggered;
uint32_t last_valid_rc_ms;
} failsafe;
// notification object for LEDs, buzzers etc (parameter set to false disables external leds)
AP_Notify notify;
// A counter used to count down valid gps fixes to allow the gps estimate to settle
// before recording our home position (and executing a ground start if we booted with an air start)
uint8_t ground_start_count;
// Location & Navigation
const float radius_of_earth = 6378100; // meters
// true if we have a position estimate from AHRS
bool have_position;
bool rtl_complete;
// angle of our next navigation waypoint
int32_t next_navigation_leg_cd;
// ground speed error in m/s
float groundspeed_error;
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
int16_t throttle_nudge;
// receiver RSSI
uint8_t receiver_rssi;
// the time when the last HEARTBEAT message arrived from a GCS
uint32_t last_heartbeat_ms;
// obstacle detection information
struct {
// have we detected an obstacle?
uint8_t detected_count;
float turn_angle;
uint16_t sonar1_distance_cm;
uint16_t sonar2_distance_cm;
// time when we last detected an obstacle, in milliseconds
uint32_t detected_time_ms;
} obstacle;
// this is set to true when auto has been triggered to start
bool auto_triggered;
// Ground speed
// The amount current ground speed is below min ground speed. meters per second
float ground_speed;
int16_t throttle_last;
int16_t throttle;
// CH7 control
// Used to track the CH7 toggle state.
// When CH7 goes LOW PWM from HIGH PWM, this value will have been set true
// This allows advanced functionality to know when to execute
bool ch7_flag;
// Battery Sensors
AP_BattMonitor battery;
// Battery Sensors
#if FRSKY_TELEM_ENABLED == ENABLED
AP_Frsky_Telem frsky_telemetry;
#endif
// Navigation control variables
// The instantaneous desired lateral acceleration in m/s/s
float lateral_acceleration;
// Waypoint distances
// Distance between rover and next waypoint. Meters
float wp_distance;
// Distance between previous and next waypoint. Meters
int32_t wp_totalDistance;
// Conditional command
// A value used in condition commands (eg delay, change alt, etc.)
// For example in a change altitude command, it is the altitude to change to.
int32_t condition_value;
// A starting value used to check the status of a conditional command.
// For example in a delay command the condition_start records that start time for the delay
int32_t condition_start;
// 3D Location vectors
// Location structure defined in AP_Common
// The home location used for RTL. The location is set when we first get stable GPS lock
const struct Location &home;
// Flag for if we have gps lock and have set the home location
bool home_is_set;
// The location of the previous waypoint. Used for track following and altitude ramp calculations
struct Location prev_WP;
// The location of the current/active waypoint. Used for track following
struct Location next_WP;
// The location of the active waypoint in Guided mode.
struct Location guided_WP;
// IMU variables
// The main loop execution time. Seconds
// This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
float G_Dt;
// Performance monitoring
// Timer used to accrue data and trigger recording of the performanc monitoring log message
int32_t perf_mon_timer;
// The maximum main loop execution time recorded in the current performance monitoring interval
uint32_t G_Dt_max;
// System Timers
// Time in microseconds of start of main control loop.
uint32_t fast_loopTimer_us;
// Number of milliseconds used in last main loop cycle
uint32_t delta_us_fast_loop;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
uint16_t mainLoop_count;
// set if we are driving backwards
bool in_reverse;
static const AP_Scheduler::Task scheduler_tasks[];
private:
// private member functions
void ahrs_update();
void mount_update(void);
void update_alt();
void gcs_failsafe_check(void);
void compass_accumulate(void);
void update_compass(void);
void update_logging1(void);
void update_logging2(void);
void update_aux(void);
void one_second_loop(void);
void update_GPS_50Hz(void);
void update_GPS_10Hz(void);
void update_current_mode(void);
void update_navigation();
void send_heartbeat(mavlink_channel_t chan);
void send_attitude(mavlink_channel_t chan);
void send_extended_status1(mavlink_channel_t chan);
void send_location(mavlink_channel_t chan);
void send_nav_controller_output(mavlink_channel_t chan);
void send_servo_out(mavlink_channel_t chan);
void send_radio_out(mavlink_channel_t chan);
void send_vfr_hud(mavlink_channel_t chan);
void send_simstate(mavlink_channel_t chan);
void send_hwstatus(mavlink_channel_t chan);
void send_rangefinder(mavlink_channel_t chan);
void send_current_waypoint(mavlink_channel_t chan);
void send_statustext(mavlink_channel_t chan);
bool telemetry_delayed(mavlink_channel_t chan);
void mavlink_delay_cb();
void gcs_send_message(enum ap_message id);
void gcs_data_stream_send(void);
void gcs_update(void);
void gcs_send_text_P(gcs_severity severity, const prog_char_t *str);
void gcs_retry_deferred(void);
bool print_log_menu(void);
void do_erase_logs(void);
void Log_Write_Performance();
void Log_Write_Steering();
void Log_Write_Startup(uint8_t type);
void Log_Write_EntireMission();
void Log_Write_Control_Tuning();
void Log_Write_Nav_Tuning();
void Log_Write_Attitude();
void Log_Write_Sonar();
void Log_Write_Current();
void Log_Write_RC(void);
void Log_Write_Baro(void);
void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page);
void start_logging() ;
void Log_Write_Startup(uint8_t type);
void Log_Write_EntireMission();
void Log_Write_Current();
void Log_Write_Nav_Tuning();
void Log_Write_Performance();
void Log_Write_Control_Tuning();
void Log_Write_Sonar();
void Log_Write_Attitude();
void start_logging();
void Log_Write_RC(void);
void load_parameters(void);
void throttle_slew_limit(int16_t last_throttle);
bool auto_check_trigger(void);
bool use_pivot_steering(void);
void calc_throttle(float target_speed);
void calc_lateral_acceleration();
void calc_nav_steer();
void set_servos(void);
void set_next_WP(const struct Location& loc);
void set_guided_WP(void);
void init_home();
void restart_nav();
void exit_mission();
void do_RTL(void);
bool verify_RTL();
bool verify_wait_delay();
bool verify_within_distance();
void do_take_picture();
void log_picture();
void update_commands(void);
void delay(uint32_t ms);
void mavlink_delay(uint32_t ms);
uint32_t millis();
uint32_t micros();
void read_control_switch();
uint8_t readSwitch(void);
void reset_control_switch();
void read_trim_switch();
void update_events(void);
void failsafe_check();
void navigate();
void reached_waypoint();
void set_control_channels(void);
void init_rc_in();
void init_rc_out();
void read_radio();
void control_failsafe(uint16_t pwm);
void trim_control_surfaces();
void trim_radio();
void init_barometer(void);
void init_sonar(void);
void read_battery(void);
void read_receiver_rssi(void);
void read_sonars(void);
void report_batt_monitor();
void report_radio();
void report_gains();
void report_throttle();
void report_compass();
void report_modes();
void print_PID(PID * pid);
void print_radio_values();
void print_switch(uint8_t p, uint8_t m);
void print_done();
void print_blanks(int num);
void print_divider(void);
int8_t radio_input_switch(void);
void zero_eeprom(void);
void print_enabled(bool b);
void init_ardupilot();
void startup_ground(void);
void set_reverse(bool reverse);
void set_mode(enum mode mode);
bool mavlink_set_mode(uint8_t mode);
void failsafe_trigger(uint8_t failsafe_type, bool on);
void startup_INS_ground(void);
void update_notify();
void resetPerfData(void);
void check_usb_mux(void);
uint8_t check_digital_pin(uint8_t pin);
bool should_log(uint32_t mask);
void frsky_telemetry_send(void);
void print_hit_enter();
};