ardupilot/libraries/AP_HAL_QURT/Scheduler.cpp
Andrew Tridgell 2fe08b6177 HAL_QURT: revived QURT HAL
based around new SDK for ModalAI Voxl2 vehicles
2024-07-12 15:56:48 +10:00

345 lines
8.5 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AP_HAL_QURT.h"
#include "Scheduler.h"
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <errno.h>
#include <stdio.h>
#include <pthread.h>
#include "UARTDriver.h"
#include "Storage.h"
#include "RCOutput.h"
#include "RCInput.h"
#include <AP_Scheduler/AP_Scheduler.h>
#include "Thread.h"
using namespace QURT;
extern const AP_HAL::HAL& hal;
Scheduler::Scheduler()
{
}
void Scheduler::init()
{
_main_thread_ctx = pthread_self();
// setup the timer thread - this will call tasks at 1kHz
pthread_attr_t thread_attr;
struct sched_param param;
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 16000);
param.sched_priority = APM_TIMER_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_create(&_timer_thread_ctx, &thread_attr, &Scheduler::_timer_thread, this);
// the UART thread runs at a medium priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 16000);
param.sched_priority = APM_UART_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_create(&_uart_thread_ctx, &thread_attr, &Scheduler::_uart_thread, this);
// the IO thread runs at lower priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 16000);
param.sched_priority = APM_IO_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_create(&_io_thread_ctx, &thread_attr, &Scheduler::_io_thread, this);
}
#define APM_QURT_MAX_PRIORITY (200 + 20)
#define APM_QURT_TIMER_PRIORITY (200 + 15)
#define APM_QURT_UART_PRIORITY (200 + 14)
#define APM_QURT_NET_PRIORITY (200 + 14)
#define APM_QURT_RCIN_PRIORITY (200 + 13)
#define APM_QURT_MAIN_PRIORITY (200 + 12)
#define APM_QURT_IO_PRIORITY (200 + 10)
#define APM_QURT_SCRIPTING_PRIORITY (200 + 1)
#define AP_QURT_SENSORS_SCHED_PRIO (200 + 12)
uint8_t Scheduler::calculate_thread_priority(priority_base base, int8_t priority) const
{
uint8_t thread_priority = APM_QURT_IO_PRIORITY;
static const struct {
priority_base base;
uint8_t p;
} priority_map[] = {
{ PRIORITY_BOOST, APM_QURT_MAIN_PRIORITY},
{ PRIORITY_MAIN, APM_QURT_MAIN_PRIORITY},
{ PRIORITY_SPI, AP_QURT_SENSORS_SCHED_PRIO+1},
{ PRIORITY_I2C, AP_QURT_SENSORS_SCHED_PRIO},
{ PRIORITY_CAN, APM_QURT_TIMER_PRIORITY},
{ PRIORITY_TIMER, APM_QURT_TIMER_PRIORITY},
{ PRIORITY_RCIN, APM_QURT_RCIN_PRIORITY},
{ PRIORITY_IO, APM_QURT_IO_PRIORITY},
{ PRIORITY_UART, APM_QURT_UART_PRIORITY},
{ PRIORITY_STORAGE, APM_QURT_IO_PRIORITY},
{ PRIORITY_SCRIPTING, APM_QURT_SCRIPTING_PRIORITY},
{ PRIORITY_NET, APM_QURT_NET_PRIORITY},
};
for (const auto &m : priority_map) {
if (m.base == base) {
thread_priority = constrain_int16(m.p + priority, 1, APM_QURT_MAX_PRIORITY);
break;
}
}
return thread_priority;
}
/*
create a new thread
*/
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
{
Thread *thread = new Thread{(Thread::task_t)proc};
if (thread == nullptr) {
return false;
}
const uint8_t thread_priority = calculate_thread_priority(base, priority);
stack_size = MAX(stack_size, 8192U);
// Setting the stack size too large can cause odd behavior!!!
thread->set_stack_size(stack_size);
/*
* We should probably store the thread handlers and join() when exiting,
* but let's the thread manage itself for now.
*/
thread->set_auto_free(true);
DEV_PRINTF("Starting thread %s: Priority %u", name, thread_priority);
if (!thread->start(name, SCHED_FIFO, thread_priority)) {
delete thread;
return false;
}
return true;
}
void Scheduler::delay_microseconds(uint16_t usec)
{
qurt_timer_sleep(usec);
}
void Scheduler::delay(uint16_t ms)
{
uint64_t start = AP_HAL::micros64();
while ((AP_HAL::micros64() - start)/1000 < ms) {
delay_microseconds(1000);
if (_min_delay_cb_ms <= ms) {
if (in_main_thread()) {
const auto old_task = hal.util->persistent_data.scheduler_task;
hal.util->persistent_data.scheduler_task = -4;
call_delay_cb();
hal.util->persistent_data.scheduler_task = old_task;
}
}
}
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < QURT_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < QURT_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::suspend_timer_procs()
{
_timer_suspended = true;
}
void Scheduler::resume_timer_procs()
{
_timer_suspended = false;
if (_timer_event_missed == true) {
_run_timers(false);
_timer_event_missed = false;
}
}
void Scheduler::reboot(bool hold_in_bootloader)
{
HAP_PRINTF("**** REBOOT REQUESTED ****");
// delay for printf to appear on USB monitor
qurt_timer_sleep(10000);
exit(1);
}
void Scheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
} else if (called_from_timer_thread) {
_timer_event_missed = true;
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
_in_timer_proc = false;
}
extern bool qurt_ran_overtime;
void *Scheduler::_timer_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered timers
sched->_run_timers(true);
}
return nullptr;
}
void Scheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
if (!_timer_suspended) {
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
}
_in_io_proc = false;
}
void *Scheduler::_uart_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(200);
// process any pending serial bytes
for (uint8_t i = 0; i < hal.num_serial; i++) {
auto *p = hal.serial(i);
if (p != nullptr) {
p->_timer_tick();
}
}
}
return nullptr;
}
void *Scheduler::_io_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered IO processes
sched->_run_io();
// update storage
hal.storage->_timer_tick();
// update RC input
((QURT::RCInput *)hal.rcin)->_timer_tick();
}
return nullptr;
}
bool Scheduler::in_main_thread() const
{
return pthread_equal(pthread_self(), _main_thread_ctx);
}
void Scheduler::set_system_initialized()
{
_main_thread_ctx = pthread_self();
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called"
"more than once");
}
_initialized = true;
}
void Scheduler::hal_initialized(void)
{
HAP_PRINTF("HAL is initialised");
_hal_initialized = true;
}