ardupilot/libraries/SITL/SIM_Helicopter.cpp
2015-08-19 20:44:07 +09:00

206 lines
6.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
helicopter simulator class
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "SIM_Helicopter.h"
#include <stdio.h>
/*
constructor
*/
Helicopter::Helicopter(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str)
{
mass = 2.13f;
/*
scaling from motor power to Newtons. Allows the copter
to hover against gravity when the motor is at hover_throttle
*/
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
// calculate lateral thrust ratio for tail rotor
tail_thrust_scale = sinf(radians(hover_lean)) * thrust_scale / yaw_zero;
frame_height = 0.1;
if (strstr(frame_str, "-dual")) {
frame_type = HELI_FRAME_DUAL;
} else if (strstr(frame_str, "-compound")) {
frame_type = HELI_FRAME_COMPOUND;
} else {
frame_type = HELI_FRAME_CONVENTIONAL;
}
}
/*
update the helicopter simulation by one time step
*/
void Helicopter::update(const struct sitl_input &input)
{
// how much time has passed?
float delta_time = frame_time_us * 1.0e-6f;
float rsc = (input.servos[7]-1000) / 1000.0f;
float rsc_scale = rsc/rsc_setpoint;
float thrust = 0;
float roll_rate = 0;
float pitch_rate = 0;
float yaw_rate = 0;
float torque_effect_accel = 0;
float lateral_x_thrust = 0;
float lateral_y_thrust = 0;
float swash1 = (input.servos[0]-1000) / 1000.0f;
float swash2 = (input.servos[1]-1000) / 1000.0f;
float swash3 = (input.servos[2]-1000) / 1000.0f;
switch (frame_type) {
case HELI_FRAME_CONVENTIONAL: {
// simulate a traditional helicopter
float tail_rotor = (input.servos[3]-1000) / 1000.0f;
thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f;
torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel;
roll_rate = swash1 - swash2;
pitch_rate = (swash1+swash2) / 2.0f - swash3;
yaw_rate = tail_rotor - 0.5f;
lateral_y_thrust = yaw_rate * rsc_scale * tail_thrust_scale;
break;
}
case HELI_FRAME_DUAL: {
// simulate a tandem helicopter
float swash4 = (input.servos[3]-1000) / 1000.0f;
float swash5 = (input.servos[4]-1000) / 1000.0f;
float swash6 = (input.servos[5]-1000) / 1000.0f;
thrust = (rsc / rsc_setpoint) * (swash1+swash2+swash3+swash4+swash5+swash6) / 6.0f;
torque_effect_accel = (rsc_scale + rsc / rsc_setpoint) * rotor_rot_accel * ((swash1+swash2+swash3) - (swash4+swash5+swash6));
roll_rate = (swash1-swash2) + (swash4-swash5);
pitch_rate = (swash1+swash2+swash3) - (swash4+swash5+swash6);
yaw_rate = (swash1-swash2) + (swash5-swash4);
break;
}
case HELI_FRAME_COMPOUND: {
// simulate a compound helicopter
float right_rotor = (input.servos[3]-1000) / 1000.0f;
float left_rotor = (input.servos[4]-1000) / 1000.0f;
thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f;
torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel;
roll_rate = swash1 - swash2;
pitch_rate = (swash1+swash2) / 2.0f - swash3;
yaw_rate = right_rotor - left_rotor;
lateral_x_thrust = (left_rotor+right_rotor-1) * rsc_scale * tail_thrust_scale;
break;
}
}
roll_rate *= rsc_scale;
pitch_rate *= rsc_scale;
yaw_rate *= rsc_scale;
// rotational acceleration, in rad/s/s, in body frame
Vector3f rot_accel;
rot_accel.x = roll_rate * roll_rate_max;
rot_accel.y = pitch_rate * pitch_rate_max;
rot_accel.z = yaw_rate * yaw_rate_max;
// rotational air resistance
rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate;
rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate;
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
// torque effect on tail
rot_accel.z += torque_effect_accel;
// update rotational rates in body frame
gyro += rot_accel * delta_time;
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// air resistance
Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity);
// scale thrust to newtons
thrust *= thrust_scale;
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass);
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
accel_earth += air_resistance;
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (on_ground(position) && accel_earth.z > 0) {
accel_earth.z = 0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// add some noise
add_noise(thrust / thrust_scale);
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
Vector3f old_position = position;
position += velocity_ef * delta_time;
// assume zero wind for now
airspeed = velocity_ef.length();
// constrain height to the ground
if (on_ground(position)) {
if (!on_ground(old_position)) {
printf("Hit ground at %f m/s\n", velocity_ef.z);
velocity_ef.zero();
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0, 0, y);
position.z = -(ground_level + frame_height - home.alt*0.01f);
}
}
// update lat/lon/altitude
update_position();
}
#endif // CONFIG_HAL_BOARD