mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 06:28:27 -04:00
676d75c391
This makes us look like Rover and Plane in terms of namespacing for the Mode classes, and removes a wart where we #include mode.h in the middle of the Mode class. This was done mechanically for the most part. I've had to remove the convenience reference for ap as part of this.
641 lines
30 KiB
C++
641 lines
30 KiB
C++
#include "Copter.h"
|
|
|
|
#if MODE_POSHOLD_ENABLED == ENABLED
|
|
|
|
/*
|
|
* Init and run calls for PosHold flight mode
|
|
* PosHold tries to improve upon regular loiter by mixing the pilot input with the loiter controller
|
|
*/
|
|
|
|
#define POSHOLD_SPEED_0 10 // speed below which it is always safe to switch to loiter
|
|
|
|
// 400hz loop update rate
|
|
#define POSHOLD_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter
|
|
#define POSHOLD_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than POSHOLD_LOITER_STAB_TIMER
|
|
#define POSHOLD_WIND_COMP_START_TIMER (150*4) // Number of cycles to start wind compensation update after loiter is engaged
|
|
#define POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
|
|
#define POSHOLD_SMOOTH_RATE_FACTOR 0.0125f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low.
|
|
#define POSHOLD_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz
|
|
#define LOOP_RATE_FACTOR 4 // used to adapt PosHold params to loop_rate
|
|
#define TC_WIND_COMP 0.0025f // Time constant for poshold_update_wind_comp_estimate()
|
|
|
|
// definitions that are independent of main loop rate
|
|
#define POSHOLD_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied
|
|
#define POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX 10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s
|
|
|
|
// poshold_init - initialise PosHold controller
|
|
bool ModePosHold::init(bool ignore_checks)
|
|
{
|
|
// initialize vertical speeds and acceleration
|
|
pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
|
|
pos_control->set_max_accel_z(g.pilot_accel_z);
|
|
|
|
// initialise position and desired velocity
|
|
if (!pos_control->is_active_z()) {
|
|
pos_control->set_alt_target_to_current_alt();
|
|
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
|
|
}
|
|
|
|
// initialise lean angles to current attitude
|
|
pilot_roll = 0;
|
|
pilot_pitch = 0;
|
|
|
|
// compute brake_gain
|
|
brake_gain = (15.0f * (float)g.poshold_brake_rate + 95.0f) / 100.0f;
|
|
|
|
if (copter.ap.land_complete) {
|
|
// if landed begin in loiter mode
|
|
roll_mode = RPMode::LOITER;
|
|
pitch_mode = RPMode::LOITER;
|
|
} else {
|
|
// if not landed start in pilot override to avoid hard twitch
|
|
roll_mode = RPMode::PILOT_OVERRIDE;
|
|
pitch_mode = RPMode::PILOT_OVERRIDE;
|
|
}
|
|
|
|
// initialise loiter
|
|
loiter_nav->clear_pilot_desired_acceleration();
|
|
loiter_nav->init_target();
|
|
|
|
// initialise wind_comp each time PosHold is switched on
|
|
wind_comp_ef.zero();
|
|
wind_comp_roll = 0;
|
|
wind_comp_pitch = 0;
|
|
wind_comp_timer = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
// poshold_run - runs the PosHold controller
|
|
// should be called at 100hz or more
|
|
void ModePosHold::run()
|
|
{
|
|
float takeoff_climb_rate = 0.0f;
|
|
float brake_to_loiter_mix; // mix of brake and loiter controls. 0 = fully brake controls, 1 = fully loiter controls
|
|
float controller_to_pilot_roll_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
|
|
float controller_to_pilot_pitch_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
|
|
const Vector3f& vel = inertial_nav.get_velocity();
|
|
|
|
// initialize vertical speeds and acceleration
|
|
pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
|
|
pos_control->set_max_accel_z(g.pilot_accel_z);
|
|
loiter_nav->clear_pilot_desired_acceleration();
|
|
|
|
// apply SIMPLE mode transform to pilot inputs
|
|
update_simple_mode();
|
|
|
|
// convert pilot input to lean angles
|
|
float target_roll, target_pitch;
|
|
get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, attitude_control->get_althold_lean_angle_max());
|
|
|
|
// get pilot's desired yaw rate
|
|
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
|
|
|
|
// get pilot desired climb rate (for alt-hold mode and take-off)
|
|
float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
|
|
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
|
|
|
|
// relax loiter target if we might be landed
|
|
if (copter.ap.land_complete_maybe) {
|
|
loiter_nav->soften_for_landing();
|
|
}
|
|
|
|
// Pos Hold State Machine Determination
|
|
AltHoldModeState poshold_state = get_alt_hold_state(target_climb_rate);
|
|
|
|
// state machine
|
|
switch (poshold_state) {
|
|
|
|
case AltHold_MotorStopped:
|
|
|
|
attitude_control->reset_rate_controller_I_terms();
|
|
attitude_control->set_yaw_target_to_current_heading();
|
|
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
|
|
loiter_nav->init_target();
|
|
loiter_nav->update();
|
|
|
|
// set poshold state to pilot override
|
|
roll_mode = RPMode::PILOT_OVERRIDE;
|
|
pitch_mode = RPMode::PILOT_OVERRIDE;
|
|
break;
|
|
|
|
case AltHold_Takeoff:
|
|
|
|
// initiate take-off
|
|
if (!takeoff.running()) {
|
|
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
|
|
}
|
|
|
|
// get take-off adjusted pilot and takeoff climb rates
|
|
takeoff.get_climb_rates(target_climb_rate, takeoff_climb_rate);
|
|
|
|
// get avoidance adjusted climb rate
|
|
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
|
|
|
|
// init and update loiter although pilot is controlling lean angles
|
|
loiter_nav->init_target();
|
|
loiter_nav->update();
|
|
|
|
// set position controller targets
|
|
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
|
|
pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
|
|
|
|
// set poshold state to pilot override
|
|
roll_mode = RPMode::PILOT_OVERRIDE;
|
|
pitch_mode = RPMode::PILOT_OVERRIDE;
|
|
break;
|
|
|
|
case AltHold_Landed_Ground_Idle:
|
|
|
|
loiter_nav->init_target();
|
|
loiter_nav->update();
|
|
attitude_control->reset_rate_controller_I_terms();
|
|
attitude_control->set_yaw_target_to_current_heading();
|
|
// FALLTHROUGH
|
|
|
|
case AltHold_Landed_Pre_Takeoff:
|
|
|
|
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
|
|
|
|
// set poshold state to pilot override
|
|
roll_mode = RPMode::PILOT_OVERRIDE;
|
|
pitch_mode = RPMode::PILOT_OVERRIDE;
|
|
break;
|
|
|
|
case AltHold_Flying:
|
|
|
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
|
|
|
|
#if AC_AVOID_ENABLED == ENABLED
|
|
// apply avoidance
|
|
copter.avoid.adjust_roll_pitch(target_roll, target_pitch, copter.aparm.angle_max);
|
|
#endif
|
|
|
|
// adjust climb rate using rangefinder
|
|
if (copter.rangefinder_alt_ok()) {
|
|
// if rangefinder is ok, use surface tracking
|
|
target_climb_rate = copter.get_surface_tracking_climb_rate(target_climb_rate);
|
|
}
|
|
|
|
// get avoidance adjusted climb rate
|
|
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
|
|
|
|
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
|
|
break;
|
|
}
|
|
|
|
// poshold specific behaviour to calculate desired roll, pitch angles
|
|
// convert inertial nav earth-frame velocities to body-frame
|
|
// To-Do: move this to AP_Math (or perhaps we already have a function to do this)
|
|
float vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw();
|
|
float vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw();
|
|
|
|
// If not in LOITER, retrieve latest wind compensation lean angles related to current yaw
|
|
if (roll_mode != RPMode::LOITER || pitch_mode != RPMode::LOITER) {
|
|
get_wind_comp_lean_angles(wind_comp_roll, wind_comp_pitch);
|
|
}
|
|
|
|
// Roll state machine
|
|
// Each state (aka mode) is responsible for:
|
|
// 1. dealing with pilot input
|
|
// 2. calculating the final roll output to the attitude controller
|
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
|
|
switch (roll_mode) {
|
|
|
|
case RPMode::PILOT_OVERRIDE:
|
|
// update pilot desired roll angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
update_pilot_lean_angle(pilot_roll, target_roll);
|
|
|
|
// switch to BRAKE mode for next iteration if no pilot input
|
|
if (is_zero(target_roll) && (fabsf(pilot_roll) < 2 * g.poshold_brake_rate)) {
|
|
// initialise BRAKE mode
|
|
roll_mode = RPMode::BRAKE; // Set brake roll mode
|
|
brake_roll = 0; // initialise braking angle to zero
|
|
brake_angle_max_roll = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
|
|
brake_timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
|
|
braking_time_updated_roll = false; // flag the braking time can be re-estimated
|
|
}
|
|
|
|
// final lean angle should be pilot input plus wind compensation
|
|
roll = pilot_roll + wind_comp_roll;
|
|
break;
|
|
|
|
case RPMode::BRAKE:
|
|
case RPMode::BRAKE_READY_TO_LOITER:
|
|
// calculate brake_roll angle to counter-act velocity
|
|
update_brake_angle_from_velocity(brake_roll, vel_right);
|
|
|
|
// update braking time estimate
|
|
if (!braking_time_updated_roll) {
|
|
// check if brake angle is increasing
|
|
if (abs(brake_roll) >= brake_angle_max_roll) {
|
|
brake_angle_max_roll = abs(brake_roll);
|
|
} else {
|
|
// braking angle has started decreasing so re-estimate braking time
|
|
brake_timeout_roll = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(brake_roll))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
|
|
braking_time_updated_roll = true;
|
|
}
|
|
}
|
|
|
|
// if velocity is very low reduce braking time to 0.5seconds
|
|
if ((fabsf(vel_right) <= POSHOLD_SPEED_0) && (brake_timeout_roll > 50*LOOP_RATE_FACTOR)) {
|
|
brake_timeout_roll = 50*LOOP_RATE_FACTOR;
|
|
}
|
|
|
|
// reduce braking timer
|
|
if (brake_timeout_roll > 0) {
|
|
brake_timeout_roll--;
|
|
} else {
|
|
// indicate that we are ready to move to Loiter.
|
|
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
|
|
// logic for engaging loiter is handled below the roll and pitch mode switch statements
|
|
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
|
|
}
|
|
|
|
// final lean angle is braking angle + wind compensation angle
|
|
roll = brake_roll + wind_comp_roll;
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_roll)) {
|
|
// init transition to pilot override
|
|
roll_controller_to_pilot_override();
|
|
}
|
|
break;
|
|
|
|
case RPMode::BRAKE_TO_LOITER:
|
|
case RPMode::LOITER:
|
|
// these modes are combined roll-pitch modes and are handled below
|
|
break;
|
|
|
|
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE:
|
|
// update pilot desired roll angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
update_pilot_lean_angle(pilot_roll, target_roll);
|
|
|
|
// count-down loiter to pilot timer
|
|
if (controller_to_pilot_timer_roll > 0) {
|
|
controller_to_pilot_timer_roll--;
|
|
} else {
|
|
// when timer runs out switch to full pilot override for next iteration
|
|
roll_mode = RPMode::PILOT_OVERRIDE;
|
|
}
|
|
|
|
// calculate controller_to_pilot mix ratio
|
|
controller_to_pilot_roll_mix = (float)controller_to_pilot_timer_roll / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
|
|
// mix final loiter lean angle and pilot desired lean angles
|
|
roll = mix_controls(controller_to_pilot_roll_mix, controller_final_roll, pilot_roll + wind_comp_roll);
|
|
break;
|
|
}
|
|
|
|
// Pitch state machine
|
|
// Each state (aka mode) is responsible for:
|
|
// 1. dealing with pilot input
|
|
// 2. calculating the final pitch output to the attitude contpitcher
|
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
|
|
switch (pitch_mode) {
|
|
|
|
case RPMode::PILOT_OVERRIDE:
|
|
// update pilot desired pitch angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
update_pilot_lean_angle(pilot_pitch, target_pitch);
|
|
|
|
// switch to BRAKE mode for next iteration if no pilot input
|
|
if (is_zero(target_pitch) && (fabsf(pilot_pitch) < 2 * g.poshold_brake_rate)) {
|
|
// initialise BRAKE mode
|
|
pitch_mode = RPMode::BRAKE; // set brake pitch mode
|
|
brake_pitch = 0; // initialise braking angle to zero
|
|
brake_angle_max_pitch = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
|
|
brake_timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
|
|
braking_time_updated_pitch = false; // flag the braking time can be re-estimated
|
|
}
|
|
|
|
// final lean angle should be pilot input plus wind compensation
|
|
pitch = pilot_pitch + wind_comp_pitch;
|
|
break;
|
|
|
|
case RPMode::BRAKE:
|
|
case RPMode::BRAKE_READY_TO_LOITER:
|
|
// calculate brake_pitch angle to counter-act velocity
|
|
update_brake_angle_from_velocity(brake_pitch, -vel_fw);
|
|
|
|
// update braking time estimate
|
|
if (!braking_time_updated_pitch) {
|
|
// check if brake angle is increasing
|
|
if (abs(brake_pitch) >= brake_angle_max_pitch) {
|
|
brake_angle_max_pitch = abs(brake_pitch);
|
|
} else {
|
|
// braking angle has started decreasing so re-estimate braking time
|
|
brake_timeout_pitch = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(brake_pitch))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
|
|
braking_time_updated_pitch = true;
|
|
}
|
|
}
|
|
|
|
// if velocity is very low reduce braking time to 0.5seconds
|
|
if ((fabsf(vel_fw) <= POSHOLD_SPEED_0) && (brake_timeout_pitch > 50*LOOP_RATE_FACTOR)) {
|
|
brake_timeout_pitch = 50*LOOP_RATE_FACTOR;
|
|
}
|
|
|
|
// reduce braking timer
|
|
if (brake_timeout_pitch > 0) {
|
|
brake_timeout_pitch--;
|
|
} else {
|
|
// indicate that we are ready to move to Loiter.
|
|
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
|
|
// logic for engaging loiter is handled below the pitch and pitch mode switch statements
|
|
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
|
|
}
|
|
|
|
// final lean angle is braking angle + wind compensation angle
|
|
pitch = brake_pitch + wind_comp_pitch;
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_pitch)) {
|
|
// init transition to pilot override
|
|
pitch_controller_to_pilot_override();
|
|
}
|
|
break;
|
|
|
|
case RPMode::BRAKE_TO_LOITER:
|
|
case RPMode::LOITER:
|
|
// these modes are combined pitch-pitch modes and are handled below
|
|
break;
|
|
|
|
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE:
|
|
// update pilot desired pitch angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
update_pilot_lean_angle(pilot_pitch, target_pitch);
|
|
|
|
// count-down loiter to pilot timer
|
|
if (controller_to_pilot_timer_pitch > 0) {
|
|
controller_to_pilot_timer_pitch--;
|
|
} else {
|
|
// when timer runs out switch to full pilot override for next iteration
|
|
pitch_mode = RPMode::PILOT_OVERRIDE;
|
|
}
|
|
|
|
// calculate controller_to_pilot mix ratio
|
|
controller_to_pilot_pitch_mix = (float)controller_to_pilot_timer_pitch / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
|
|
// mix final loiter lean angle and pilot desired lean angles
|
|
pitch = mix_controls(controller_to_pilot_pitch_mix, controller_final_pitch, pilot_pitch + wind_comp_pitch);
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Shared roll & pitch states (RPMode::BRAKE_TO_LOITER and RPMode::LOITER)
|
|
//
|
|
|
|
// switch into LOITER mode when both roll and pitch are ready
|
|
if (roll_mode == RPMode::BRAKE_READY_TO_LOITER && pitch_mode == RPMode::BRAKE_READY_TO_LOITER) {
|
|
roll_mode = RPMode::BRAKE_TO_LOITER;
|
|
pitch_mode = RPMode::BRAKE_TO_LOITER;
|
|
brake_to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER;
|
|
// init loiter controller
|
|
loiter_nav->init_target(inertial_nav.get_position());
|
|
// set delay to start of wind compensation estimate updates
|
|
wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER;
|
|
}
|
|
|
|
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
|
|
if (roll_mode == RPMode::BRAKE_TO_LOITER || roll_mode == RPMode::LOITER) {
|
|
|
|
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
|
|
pitch_mode = roll_mode;
|
|
|
|
// handle combined roll+pitch mode
|
|
switch (roll_mode) {
|
|
case RPMode::BRAKE_TO_LOITER:
|
|
// reduce brake_to_loiter timer
|
|
if (brake_to_loiter_timer > 0) {
|
|
brake_to_loiter_timer--;
|
|
} else {
|
|
// progress to full loiter on next iteration
|
|
roll_mode = RPMode::LOITER;
|
|
pitch_mode = RPMode::LOITER;
|
|
}
|
|
|
|
// calculate percentage mix of loiter and brake control
|
|
brake_to_loiter_mix = (float)brake_to_loiter_timer / (float)POSHOLD_BRAKE_TO_LOITER_TIMER;
|
|
|
|
// calculate brake_roll and pitch angles to counter-act velocity
|
|
update_brake_angle_from_velocity(brake_roll, vel_right);
|
|
update_brake_angle_from_velocity(brake_pitch, -vel_fw);
|
|
|
|
// run loiter controller
|
|
loiter_nav->update();
|
|
|
|
// calculate final roll and pitch output by mixing loiter and brake controls
|
|
roll = mix_controls(brake_to_loiter_mix, brake_roll + wind_comp_roll, loiter_nav->get_roll());
|
|
pitch = mix_controls(brake_to_loiter_mix, brake_pitch + wind_comp_pitch, loiter_nav->get_pitch());
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
|
|
// if roll input switch to pilot override for roll
|
|
if (!is_zero(target_roll)) {
|
|
// init transition to pilot override
|
|
roll_controller_to_pilot_override();
|
|
// switch pitch-mode to brake (but ready to go back to loiter anytime)
|
|
// no need to reset brake_pitch here as wind comp has not been updated since last brake_pitch computation
|
|
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
|
|
}
|
|
// if pitch input switch to pilot override for pitch
|
|
if (!is_zero(target_pitch)) {
|
|
// init transition to pilot override
|
|
pitch_controller_to_pilot_override();
|
|
if (is_zero(target_roll)) {
|
|
// switch roll-mode to brake (but ready to go back to loiter anytime)
|
|
// no need to reset brake_roll here as wind comp has not been updated since last brake_roll computation
|
|
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RPMode::LOITER:
|
|
// run loiter controller
|
|
loiter_nav->update();
|
|
|
|
// set roll angle based on loiter controller outputs
|
|
roll = loiter_nav->get_roll();
|
|
pitch = loiter_nav->get_pitch();
|
|
|
|
// update wind compensation estimate
|
|
update_wind_comp_estimate();
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
|
|
// if roll input switch to pilot override for roll
|
|
if (!is_zero(target_roll)) {
|
|
// init transition to pilot override
|
|
roll_controller_to_pilot_override();
|
|
// switch pitch-mode to brake (but ready to go back to loiter anytime)
|
|
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
|
|
// reset brake_pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle
|
|
brake_pitch = 0;
|
|
}
|
|
// if pitch input switch to pilot override for pitch
|
|
if (!is_zero(target_pitch)) {
|
|
// init transition to pilot override
|
|
pitch_controller_to_pilot_override();
|
|
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time)
|
|
if (is_zero(target_roll)) {
|
|
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
|
|
brake_roll = 0;
|
|
}
|
|
// if roll not overridden switch roll-mode to brake (but be ready to go back to loiter any time)
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// do nothing for uncombined roll and pitch modes
|
|
break;
|
|
}
|
|
}
|
|
|
|
// constrain target pitch/roll angles
|
|
float angle_max = copter.aparm.angle_max;
|
|
roll = constrain_int16(roll, -angle_max, angle_max);
|
|
pitch = constrain_int16(pitch, -angle_max, angle_max);
|
|
|
|
// call attitude controller
|
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(roll, pitch, target_yaw_rate);
|
|
|
|
// call z-axis position controller
|
|
pos_control->update_z_controller();
|
|
}
|
|
|
|
// poshold_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received
|
|
void ModePosHold::update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw)
|
|
{
|
|
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle
|
|
if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (fabsf(lean_angle_raw) > POSHOLD_STICK_RELEASE_SMOOTH_ANGLE)) {
|
|
lean_angle_filtered = lean_angle_raw;
|
|
} else {
|
|
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease
|
|
if (lean_angle_filtered > 0) {
|
|
// reduce the filtered lean angle at 5% or the brake rate (whichever is faster).
|
|
lean_angle_filtered -= MAX((float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR));
|
|
// do not let the filtered angle fall below the pilot's input lean angle.
|
|
// the above line pulls the filtered angle down and the below line acts as a catch
|
|
lean_angle_filtered = MAX(lean_angle_filtered, lean_angle_raw);
|
|
}else{
|
|
lean_angle_filtered += MAX(-(float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR));
|
|
lean_angle_filtered = MIN(lean_angle_filtered, lean_angle_raw);
|
|
}
|
|
}
|
|
}
|
|
|
|
// mix_controls - mixes two controls based on the mix_ratio
|
|
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly
|
|
int16_t ModePosHold::mix_controls(float mix_ratio, int16_t first_control, int16_t second_control)
|
|
{
|
|
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f);
|
|
return (int16_t)((mix_ratio * first_control) + ((1.0f-mix_ratio)*second_control));
|
|
}
|
|
|
|
// update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain
|
|
// brake_angle is slewed with the wpnav.poshold_brake_rate and constrained by the wpnav.poshold_braking_angle_max
|
|
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity)
|
|
void ModePosHold::update_brake_angle_from_velocity(int16_t &brake_angle, float velocity)
|
|
{
|
|
float lean_angle;
|
|
int16_t brake_rate = g.poshold_brake_rate;
|
|
|
|
brake_rate /= 4;
|
|
if (brake_rate <= 0) {
|
|
brake_rate = 1;
|
|
}
|
|
|
|
// calculate velocity-only based lean angle
|
|
if (velocity >= 0) {
|
|
lean_angle = -brake_gain * velocity * (1.0f+500.0f/(velocity+60.0f));
|
|
} else {
|
|
lean_angle = -brake_gain * velocity * (1.0f+500.0f/(-velocity+60.0f));
|
|
}
|
|
|
|
// do not let lean_angle be too far from brake_angle
|
|
brake_angle = constrain_int16((int16_t)lean_angle, brake_angle - brake_rate, brake_angle + brake_rate);
|
|
|
|
// constrain final brake_angle
|
|
brake_angle = constrain_int16(brake_angle, -g.poshold_brake_angle_max, g.poshold_brake_angle_max);
|
|
}
|
|
|
|
// update_wind_comp_estimate - updates wind compensation estimate
|
|
// should be called at the maximum loop rate when loiter is engaged
|
|
void ModePosHold::update_wind_comp_estimate()
|
|
{
|
|
// check wind estimate start has not been delayed
|
|
if (wind_comp_start_timer > 0) {
|
|
wind_comp_start_timer--;
|
|
return;
|
|
}
|
|
|
|
// check horizontal velocity is low
|
|
if (inertial_nav.get_speed_xy() > POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX) {
|
|
return;
|
|
}
|
|
|
|
// get position controller accel target
|
|
// To-Do: clean this up by using accessor in loiter controller (or move entire PosHold controller to a library shared with loiter)
|
|
const Vector3f& accel_target = pos_control->get_accel_target();
|
|
|
|
// update wind compensation in earth-frame lean angles
|
|
if (is_zero(wind_comp_ef.x)) {
|
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
|
|
wind_comp_ef.x = accel_target.x;
|
|
} else {
|
|
// low pass filter the position controller's lean angle output
|
|
wind_comp_ef.x = (1.0f-TC_WIND_COMP)*wind_comp_ef.x + TC_WIND_COMP*accel_target.x;
|
|
}
|
|
if (is_zero(wind_comp_ef.y)) {
|
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
|
|
wind_comp_ef.y = accel_target.y;
|
|
} else {
|
|
// low pass filter the position controller's lean angle output
|
|
wind_comp_ef.y = (1.0f-TC_WIND_COMP)*wind_comp_ef.y + TC_WIND_COMP*accel_target.y;
|
|
}
|
|
}
|
|
|
|
// get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles
|
|
// should be called at the maximum loop rate
|
|
void ModePosHold::get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle)
|
|
{
|
|
// reduce rate to 10hz
|
|
wind_comp_timer++;
|
|
if (wind_comp_timer < POSHOLD_WIND_COMP_TIMER_10HZ) {
|
|
return;
|
|
}
|
|
wind_comp_timer = 0;
|
|
|
|
// convert earth frame desired accelerations to body frame roll and pitch lean angles
|
|
roll_angle = atanf((-wind_comp_ef.x*ahrs.sin_yaw() + wind_comp_ef.y*ahrs.cos_yaw())/981)*(18000/M_PI);
|
|
pitch_angle = atanf(-(wind_comp_ef.x*ahrs.cos_yaw() + wind_comp_ef.y*ahrs.sin_yaw())/981)*(18000/M_PI);
|
|
}
|
|
|
|
// roll_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
|
|
void ModePosHold::roll_controller_to_pilot_override()
|
|
{
|
|
roll_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE;
|
|
controller_to_pilot_timer_roll = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
// initialise pilot_roll to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
|
|
pilot_roll = 0;
|
|
// store final controller output for mixing with pilot input
|
|
controller_final_roll = roll;
|
|
}
|
|
|
|
// pitch_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
|
|
void ModePosHold::pitch_controller_to_pilot_override()
|
|
{
|
|
pitch_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE;
|
|
controller_to_pilot_timer_pitch = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
// initialise pilot_pitch to 0, wind_comp will be updated to compensate and update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
|
|
pilot_pitch = 0;
|
|
// store final loiter outputs for mixing with pilot input
|
|
controller_final_pitch = pitch;
|
|
}
|
|
|
|
#endif
|