ardupilot/ArduCopterMega/Log.pde
jasonshort feb3f1a811 Added support for the AttoPilot Current sensor, Logging current is enabled at 10hz,
Trim is now called again on pitch and roll, now that trimming can be done with adc_offsets. Fixed setup::motors for x frame.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@1505 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-01-17 03:44:12 +00:00

605 lines
16 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
// Code to Write and Read packets from DataFlash log memory
// Code to interact with the user to dump or erase logs
#define HEAD_BYTE1 0xA3 // Decimal 163
#define HEAD_BYTE2 0x95 // Decimal 149
#define END_BYTE 0xBA // Decimal 186
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t print_log_menu(uint8_t argc, const Menu::arg *argv);
static int8_t dump_log(uint8_t argc, const Menu::arg *argv);
static int8_t erase_logs(uint8_t argc, const Menu::arg *argv);
static int8_t select_logs(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t help_log(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("\n"
"Commands:\n"
" dump <n> dump log <n>\n"
" erase erase all logs\n"
" enable <name>|all enable logging <name> or everything\n"
" disable <name>|all disable logging <name> or everything\n"
"\n"));
}
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command log_menu_commands[] PROGMEM = {
{"dump", dump_log},
{"erase", erase_logs},
{"enable", select_logs},
{"disable", select_logs},
{"help", help_log}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, print_log_menu);
static bool
print_log_menu(void)
{
int log_start;
int log_end;
byte last_log_num = eeprom_read_byte((uint8_t *) EE_LAST_LOG_NUM);
Serial.printf_P(PSTR("logs enabled: "));
if (0 == log_bitmask) {
Serial.printf_P(PSTR("none"));
} else {
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// the bit being set and print the name of the log option to suit.
#define PLOG(_s) if (log_bitmask & LOGBIT_ ## _s) Serial.printf_P(PSTR(" %S"), PSTR(#_s))
PLOG(ATTITUDE_FAST);
PLOG(ATTITUDE_MED);
PLOG(GPS);
PLOG(PM);
PLOG(CTUN);
PLOG(NTUN);
PLOG(MODE);
PLOG(RAW);
PLOG(CMD);
PLOG(CURRENT);
#undef PLOG
}
Serial.println();
if (last_log_num == 0) {
Serial.printf_P(PSTR("\nNo logs available for download\n"));
} else {
Serial.printf_P(PSTR("\n%d logs available for download\n"), last_log_num);
for(int i=1;i<last_log_num+1;i++) {
log_start = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(i-1)*0x02));
log_end = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(i)*0x02))-1;
if (i == last_log_num) {
log_end = eeprom_read_word((uint16_t *) EE_LAST_LOG_PAGE);
}
Serial.printf_P(PSTR("Log number %d, start page %d, end page %d\n"),
i, log_start, log_end);
}
Serial.println();
}
return(true);
}
static int8_t
dump_log(uint8_t argc, const Menu::arg *argv)
{
byte dump_log;
int dump_log_start;
int dump_log_end;
byte last_log_num;
// check that the requested log number can be read
dump_log = argv[1].i;
last_log_num = eeprom_read_byte((uint8_t *) EE_LAST_LOG_NUM);
if ((argc != 2) || (dump_log < 1) || (dump_log > last_log_num)) {
Serial.printf_P(PSTR("bad log number\n"));
return(-1);
}
dump_log_start = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(dump_log-1)*0x02));
dump_log_end = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(dump_log)*0x02))-1;
if (dump_log == last_log_num) {
dump_log_end = eeprom_read_word((uint16_t *) EE_LAST_LOG_PAGE);
}
Serial.printf_P(PSTR("Dumping Log number %d, start page %d, end page %d\n"),
dump_log, dump_log_start, dump_log_end);
Log_Read(dump_log_start, dump_log_end);
Serial.printf_P(PSTR("Log read complete\n"));
}
static int8_t
erase_logs(uint8_t argc, const Menu::arg *argv)
{
for(int i = 10 ; i > 0; i--) {
Serial.printf_P(PSTR("ATTENTION - Erasing log in %d seconds. Power off now to save log! \n"), i);
delay(1000);
}
Serial.printf_P(PSTR("\nErasing log...\n"));
for(int j = 1; j < 4001; j++)
DataFlash.PageErase(j);
eeprom_write_byte((uint8_t *)EE_LAST_LOG_NUM, 0);
eeprom_write_byte((uint8_t *)EE_LAST_LOG_PAGE, 1);
Serial.printf_P(PSTR("\nLog erased.\n"));
}
static int8_t
select_logs(uint8_t argc, const Menu::arg *argv)
{
uint16_t bits;
if (argc != 2) {
Serial.printf_P(PSTR("missing log type\n"));
return(-1);
}
bits = 0;
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp_P(argv[1].str, PSTR("all"))) {
bits = ~(bits = 0);
} else {
#define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= LOGBIT_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(MODE);
TARG(RAW);
TARG(CMD);
TARG(CURRENT);
#undef TARG
}
if (!strcasecmp_P(argv[0].str, PSTR("enable"))) {
log_bitmask |= bits;
} else {
log_bitmask &= ~bits;
}
save_EEPROM_configs(); // XXX this is a bit heavyweight...
return(0);
}
int8_t
process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
}
// Write an attitude packet. Total length : 10 bytes
void Log_Write_Attitude(int log_roll, int log_pitch, uint16_t log_yaw)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_ATTITUDE_MSG);
DataFlash.WriteInt(log_roll);
DataFlash.WriteInt(log_pitch);
DataFlash.WriteInt(log_yaw);
DataFlash.WriteByte(END_BYTE);
}
// Write a performance monitoring packet. Total length : 19 bytes
void Log_Write_Performance()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_PERFORMANCE_MSG);
DataFlash.WriteLong(millis()- perf_mon_timer);
DataFlash.WriteInt(mainLoop_count);
DataFlash.WriteInt(G_Dt_max);
DataFlash.WriteByte(dcm.gyro_sat_count);
DataFlash.WriteByte(imu.adc_constraints);
DataFlash.WriteByte(dcm.renorm_sqrt_count);
DataFlash.WriteByte(dcm.renorm_blowup_count);
DataFlash.WriteByte(gps_fix_count);
DataFlash.WriteInt((int)(dcm.get_health() * 1000));
DataFlash.WriteByte(END_BYTE);
}
// Write a command processing packet. Total length : 19 bytes
//void Log_Write_Cmd(byte num, byte id, byte p1, long alt, long lat, long lng)
void Log_Write_Cmd(byte num, struct Location *wp)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CMD_MSG);
DataFlash.WriteByte(num);
DataFlash.WriteByte(wp->id);
DataFlash.WriteByte(wp->p1);
DataFlash.WriteLong(wp->alt);
DataFlash.WriteLong(wp->lat);
DataFlash.WriteLong(wp->lng);
DataFlash.WriteByte(END_BYTE);
}
void Log_Write_Startup(byte type)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_STARTUP_MSG);
DataFlash.WriteByte(type);
DataFlash.WriteByte(wp_total);
DataFlash.WriteByte(END_BYTE);
// create a location struct to hold the temp Waypoints for printing
struct Location cmd = get_wp_with_index(0);
Log_Write_Cmd(0, &cmd);
for (int i=1; i<wp_total; i++){
cmd = get_wp_with_index(i);
Log_Write_Cmd(i, &cmd);
}
}
// Write a control tuning packet. Total length : 22 bytes
void Log_Write_Control_Tuning()
{
// DCM is adjusted for centripital, IMU is not
Vector3f accel = dcm.get_accel();
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG);
DataFlash.WriteInt((int)(rc_1.servo_out));
DataFlash.WriteInt((int)nav_roll);
DataFlash.WriteInt((int)roll_sensor);
DataFlash.WriteInt((int)(rc_2.servo_out));
DataFlash.WriteInt((int)nav_pitch);
DataFlash.WriteInt((int)pitch_sensor);
DataFlash.WriteInt((int)(rc_3.servo_out));
DataFlash.WriteInt((int)(rc_4.servo_out));
DataFlash.WriteInt((int)(accel.y * 10000));
DataFlash.WriteByte(END_BYTE);
}
// Write a navigation tuning packet. Total length : 18 bytes
void Log_Write_Nav_Tuning()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_NAV_TUNING_MSG);
DataFlash.WriteInt((uint16_t)yaw_sensor);
DataFlash.WriteInt((int)wp_distance);
DataFlash.WriteInt((uint16_t)target_bearing);
DataFlash.WriteInt((uint16_t)nav_bearing);
DataFlash.WriteInt(altitude_error);
DataFlash.WriteInt((int)airspeed);
//DataFlash.WriteInt((int)(nav_gain_scaler*1000));
DataFlash.WriteByte(END_BYTE);
}
// Write a mode packet. Total length : 5 bytes
void Log_Write_Mode(byte mode)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_MODE_MSG);
DataFlash.WriteByte(mode);
DataFlash.WriteByte(END_BYTE);
}
// Write an GPS packet. Total length : 30 bytes
void Log_Write_GPS( long log_Time, long log_Lattitude, long log_Longitude, long log_mix_alt, long log_gps_alt,
long log_Ground_Speed, long log_Ground_Course, byte log_Fix, byte log_NumSats)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_GPS_MSG);
DataFlash.WriteLong(log_Time);
DataFlash.WriteByte(log_Fix);
DataFlash.WriteByte(log_NumSats);
DataFlash.WriteLong(log_Lattitude);
DataFlash.WriteLong(log_Longitude);
DataFlash.WriteLong(log_mix_alt);
DataFlash.WriteLong(log_gps_alt);
DataFlash.WriteLong(log_Ground_Speed);
DataFlash.WriteLong(log_Ground_Course);
DataFlash.WriteByte(END_BYTE);
DataFlash.WriteByte(END_BYTE);
}
// Write an raw accel/gyro data packet. Total length : 28 bytes
void Log_Write_Raw()
{
Vector3f gyro = dcm.get_gyro();
Vector3f accel = dcm.get_accel();
gyro *= t7; // Scale up for storage as long integers
accel *= t7;
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_RAW_MSG);
DataFlash.WriteLong((long)gyro.x);
DataFlash.WriteLong((long)gyro.y);
DataFlash.WriteLong((long)gyro.z);
DataFlash.WriteLong((long)accel.x);
DataFlash.WriteLong((long)accel.y);
DataFlash.WriteLong((long)accel.z);
DataFlash.WriteByte(END_BYTE);
}
void Log_Write_Current()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CURRENT_MSG);
DataFlash.WriteLong((long)(current_voltage * 1000.0));
DataFlash.WriteLong((long)(current_amps * 1000.0));
DataFlash.WriteByte(END_BYTE);
}
// Read a Current packet
void Log_Read_Current()
{
float logvoltage, logcurrent;
Serial.print("CURR:");
Serial.print((float)DataFlash.ReadLong() / 1000.f);
Serial.print(comma);
Serial.print((float)DataFlash.ReadLong() / 1000.f);
Serial.println();
}
// Read an control tuning packet
void Log_Read_Control_Tuning()
{
float logvar;
Serial.print("CTUN:");
for (int y=1;y<10;y++) {
logvar = DataFlash.ReadInt();
if(y < 8) logvar = logvar/100.f;
if(y == 9) logvar = logvar/10000.f;
Serial.print(logvar);
Serial.print(comma);
}
Serial.println(" ");
}
// Read a nav tuning packet
void Log_Read_Nav_Tuning()
{
Serial.print("NTUN:");
Serial.print((float)((uint16_t)DataFlash.ReadInt())/100.0); // Yaw from IMU
Serial.print(comma);
Serial.print(DataFlash.ReadInt()); // wp_distance
Serial.print(comma);
Serial.print((float)((uint16_t)DataFlash.ReadInt())/100.0); // target_bearing - Bearing to Target
Serial.print(comma);
Serial.print((float)((uint16_t)DataFlash.ReadInt())/100.0); // nav_bearing - Bearing to steer
Serial.print(comma);
Serial.print((float)DataFlash.ReadInt()/100.0); // Altitude error
Serial.print(comma);
Serial.print((float)DataFlash.ReadInt()/100.0); // Airspeed
Serial.println(comma);
//Serial.print((float)DataFlash.ReadInt()/1000.0); // nav_gain_scaler
//Serial.println(comma);
}
// Read a performance packet
void Log_Read_Performance()
{
long pm_time;
int logvar;
Serial.print("PM:");
pm_time = DataFlash.ReadLong();
Serial.print(pm_time);
Serial.print(comma);
for (int y=1;y<9;y++) {
if(y<3 || y>7) logvar = DataFlash.ReadInt();
else logvar = DataFlash.ReadByte();
//if(y > 7) logvar = logvar/1000.f;
Serial.print(logvar);
Serial.print(comma);
}
Serial.println(" ");
}
// Read a command processing packet
void Log_Read_Cmd()
{
byte logvarb;
long logvarl;
Serial.print("CMD:");
for(int i=1;i<4;i++) {
logvarb = DataFlash.ReadByte();
Serial.print(logvarb,DEC);
Serial.print(comma);
}
for(int i=1;i<4;i++) {
logvarl = DataFlash.ReadLong();
Serial.print(logvarl,DEC);
Serial.print(comma);
}
Serial.println(" ");
}
void Log_Read_Startup()
{
byte logbyte = DataFlash.ReadByte();
if (logbyte == TYPE_AIRSTART_MSG)
Serial.print("AIR START - ");
else if (logbyte == TYPE_GROUNDSTART_MSG)
Serial.print("GROUND START - ");
else
Serial.print("UNKNOWN STARTUP TYPE -");
Serial.print(DataFlash.ReadByte(), DEC);
Serial.println(" commands in memory");
}
// Read an attitude packet
void Log_Read_Attitude()
{
int log_roll;
int log_pitch;
uint16_t log_yaw;
log_roll = DataFlash.ReadInt();
log_pitch = DataFlash.ReadInt();
log_yaw = (uint16_t)DataFlash.ReadInt();
Serial.print("ATT:");
Serial.print(log_roll);
Serial.print(comma);
Serial.print(log_pitch);
Serial.print(comma);
Serial.print(log_yaw);
Serial.println();
}
// Read a mode packet
void Log_Read_Mode()
{
byte mode;
mode = DataFlash.ReadByte();
Serial.print("MOD:");
Serial.println(flight_mode_strings[control_mode]);
}
// Read a GPS packet
void Log_Read_GPS()
{
Serial.print("GPS:");
Serial.print(DataFlash.ReadLong()); // Time
Serial.print(comma);
Serial.print((int)DataFlash.ReadByte()); // Fix
Serial.print(comma);
Serial.print((int)DataFlash.ReadByte()); // Num of Sats
Serial.print(comma);
Serial.print((float)DataFlash.ReadLong()/t7, 7); // Lattitude
Serial.print(comma);
Serial.print((float)DataFlash.ReadLong()/t7, 7); // Longitude
Serial.print(comma);
Serial.print((float)DataFlash.ReadLong()/100.0); // Baro/gps altitude mix
Serial.print(comma);
Serial.print((float)DataFlash.ReadLong()/100.0); // GPS altitude
Serial.print(comma);
Serial.print((float)DataFlash.ReadLong()/100.0); // Ground Speed
Serial.print(comma);
Serial.println((float)DataFlash.ReadLong()/100.0); // Ground Course
}
// Read a raw accel/gyro packet
void Log_Read_Raw()
{
float logvar;
Serial.print("RAW:");
for (int y=0;y<6;y++) {
logvar = (float)DataFlash.ReadLong()/t7;
Serial.print(logvar);
Serial.print(comma);
}
Serial.println(" ");
}
// Read the DataFlash log memory : Packet Parser
void Log_Read(int start_page, int end_page)
{
byte data;
byte log_step=0;
int packet_count=0;
int page = start_page;
DataFlash.StartRead(start_page);
while (page < end_page && page != -1)
{
data = DataFlash.ReadByte();
switch(log_step) //This is a state machine to read the packets
{
case 0:
if(data==HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data==HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
if(data==LOG_ATTITUDE_MSG){
Log_Read_Attitude();
log_step++;
}else if(data==LOG_MODE_MSG){
Log_Read_Mode();
log_step++;
}else if(data==LOG_CONTROL_TUNING_MSG){
Log_Read_Control_Tuning();
log_step++;
}else if(data==LOG_NAV_TUNING_MSG){
Log_Read_Nav_Tuning();
log_step++;
}else if(data==LOG_PERFORMANCE_MSG){
Log_Read_Performance();
log_step++;
}else if(data==LOG_RAW_MSG){
Log_Read_Raw();
log_step++;
}else if(data==LOG_CMD_MSG){
Log_Read_Cmd();
log_step++;
}else if(data==LOG_STARTUP_MSG){
Log_Read_Startup();
log_step++;
}else {
if(data==LOG_GPS_MSG){
Log_Read_GPS();
log_step++;
} else {
Serial.print("Error Reading Packet: ");
Serial.print(packet_count);
log_step=0; // Restart, we have a problem...
}
}
break;
case 3:
if(data==END_BYTE){
packet_count++;
}else{
Serial.print("Error Reading END_BYTE ");
Serial.println(data,DEC);
}
log_step=0; // Restart sequence: new packet...
break;
}
page = DataFlash.GetPage();
}
Serial.print("Number of packets read: ");
Serial.println(packet_count);
}