mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-06 16:08:28 -04:00
455 lines
13 KiB
Plaintext
455 lines
13 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// These are function definitions so the Menu can be constructed before the functions
|
|
// are defined below. Order matters to the compiler.
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
static int8_t test_baro(uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
static int8_t test_compass(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_motors(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_motorsync(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
static int8_t test_shell(uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
|
|
// Creates a constant array of structs representing menu options
|
|
// and stores them in Flash memory, not RAM.
|
|
// User enters the string in the console to call the functions on the right.
|
|
// See class Menu in AP_Coommon for implementation details
|
|
const struct Menu::command test_menu_commands[] PROGMEM = {
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
{"baro", test_baro},
|
|
#endif
|
|
{"compass", test_compass},
|
|
{"ins", test_ins},
|
|
{"motors", test_motors},
|
|
{"motorsync", test_motorsync},
|
|
{"optflow", test_optflow},
|
|
{"relay", test_relay},
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
{"shell", test_shell},
|
|
#endif
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
{"sonar", test_sonar},
|
|
#endif
|
|
};
|
|
|
|
// A Macro to create the Menu
|
|
MENU(test_menu, "test", test_menu_commands);
|
|
|
|
static int8_t
|
|
test_mode(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
test_menu.run();
|
|
return 0;
|
|
}
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
static int8_t
|
|
test_baro(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int32_t alt;
|
|
print_hit_enter();
|
|
init_barometer(true);
|
|
|
|
while(1) {
|
|
delay(100);
|
|
alt = read_barometer();
|
|
|
|
if (!barometer.healthy) {
|
|
cliSerial->println_P(PSTR("not healthy"));
|
|
} else {
|
|
cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"),
|
|
alt / 100.0,
|
|
barometer.get_pressure(),
|
|
barometer.get_temperature());
|
|
}
|
|
if(cliSerial->available() > 0) {
|
|
return (0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int8_t
|
|
test_compass(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
uint8_t delta_ms_fast_loop;
|
|
uint8_t medium_loopCounter = 0;
|
|
|
|
if (!g.compass_enabled) {
|
|
cliSerial->printf_P(PSTR("Compass: "));
|
|
print_enabled(false);
|
|
return (0);
|
|
}
|
|
|
|
if (!compass.init()) {
|
|
cliSerial->println_P(PSTR("Compass initialisation failed!"));
|
|
return 0;
|
|
}
|
|
|
|
ahrs.init();
|
|
ahrs.set_fly_forward(true);
|
|
ahrs.set_compass(&compass);
|
|
report_compass();
|
|
|
|
// we need the AHRS initialised for this test
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
ins_sample_rate);
|
|
ahrs.reset();
|
|
int16_t counter = 0;
|
|
float heading = 0;
|
|
|
|
print_hit_enter();
|
|
|
|
while(1) {
|
|
delay(20);
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
fast_loopTimer = millis();
|
|
|
|
// INS
|
|
// ---
|
|
ahrs.update();
|
|
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5) {
|
|
if (compass.read()) {
|
|
// Calculate heading
|
|
const Matrix3f &m = ahrs.get_dcm_matrix();
|
|
heading = compass.calculate_heading(m);
|
|
compass.learn_offsets();
|
|
}
|
|
medium_loopCounter = 0;
|
|
}
|
|
|
|
counter++;
|
|
if (counter>20) {
|
|
if (compass.healthy()) {
|
|
const Vector3f &mag_ofs = compass.get_offsets();
|
|
const Vector3f &mag = compass.get_field();
|
|
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
|
|
(wrap_360_cd(ToDeg(heading) * 100)) /100,
|
|
mag.x,
|
|
mag.y,
|
|
mag.z,
|
|
mag_ofs.x,
|
|
mag_ofs.y,
|
|
mag_ofs.z);
|
|
} else {
|
|
cliSerial->println_P(PSTR("compass not healthy"));
|
|
}
|
|
counter=0;
|
|
}
|
|
}
|
|
if (cliSerial->available() > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// save offsets. This allows you to get sane offset values using
|
|
// the CLI before you go flying.
|
|
cliSerial->println_P(PSTR("saving offsets"));
|
|
compass.save_offsets();
|
|
return (0);
|
|
}
|
|
|
|
static int8_t
|
|
test_ins(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Vector3f gyro, accel;
|
|
print_hit_enter();
|
|
cliSerial->printf_P(PSTR("INS\n"));
|
|
delay(1000);
|
|
|
|
ahrs.init();
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
ins_sample_rate);
|
|
cliSerial->printf_P(PSTR("...done\n"));
|
|
|
|
delay(50);
|
|
|
|
while(1) {
|
|
ins.update();
|
|
gyro = ins.get_gyro();
|
|
accel = ins.get_accel();
|
|
|
|
float test = accel.length() / GRAVITY_MSS;
|
|
|
|
cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %7.4f \n"),
|
|
accel.x, accel.y, accel.z,
|
|
gyro.x, gyro.y, gyro.z,
|
|
test);
|
|
|
|
delay(40);
|
|
if(cliSerial->available() > 0) {
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_motors(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR(
|
|
"Connect battery for this test.\n"
|
|
"Motors will spin by frame position order.\n"
|
|
"Front (& right of centerline) motor first, then in clockwise order around frame.\n"
|
|
"Remember to disconnect battery after this test.\n"
|
|
"Any key to exit.\n"));
|
|
|
|
// ensure all values have been sent to motors
|
|
motors.set_update_rate(g.rc_speed);
|
|
motors.set_frame_orientation(g.frame_orientation);
|
|
motors.set_min_throttle(g.throttle_min);
|
|
motors.set_mid_throttle(g.throttle_mid);
|
|
|
|
// enable motors
|
|
init_rc_out();
|
|
|
|
while(1) {
|
|
delay(20);
|
|
read_radio();
|
|
motors.output_test();
|
|
if(cliSerial->available() > 0) {
|
|
g.esc_calibrate.set_and_save(0);
|
|
return(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// test_motorsync - suddenly increases pwm output to motors to test if ESC loses sync
|
|
static int8_t
|
|
test_motorsync(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
bool test_complete = false;
|
|
bool spin_motors = false;
|
|
uint32_t spin_start_time = 0;
|
|
uint32_t last_run_time;
|
|
int16_t last_throttle = 0;
|
|
int16_t c;
|
|
|
|
// check if radio is calibration
|
|
pre_arm_rc_checks();
|
|
if (!ap.pre_arm_rc_check) {
|
|
cliSerial->print_P(PSTR("radio not calibrated\n"));
|
|
return 0;
|
|
}
|
|
|
|
// print warning that motors will spin
|
|
// ask user to raise throttle
|
|
// inform how to stop test
|
|
cliSerial->print_P(PSTR("This sends sudden outputs to the motors based on the pilot's throttle to test for ESC loss of sync. Motors will spin so mount props up-side-down!\n Hold throttle low, then raise throttle stick to desired level and press A. Motors will spin for 2 sec and then return to low.\nPress any key to exit.\n"));
|
|
|
|
// clear out user input
|
|
while (cliSerial->available()) {
|
|
cliSerial->read();
|
|
}
|
|
|
|
// disable throttle and battery failsafe
|
|
g.failsafe_throttle = FS_THR_DISABLED;
|
|
g.failsafe_battery_enabled = FS_BATT_DISABLED;
|
|
|
|
// read radio
|
|
read_radio();
|
|
|
|
// exit immediately if throttle is not zero
|
|
if( g.rc_3.control_in != 0 ) {
|
|
cliSerial->print_P(PSTR("throttle not zero\n"));
|
|
return 0;
|
|
}
|
|
|
|
// clear out any user input
|
|
while (cliSerial->available()) {
|
|
cliSerial->read();
|
|
}
|
|
|
|
// enable motors and pass through throttle
|
|
init_rc_out();
|
|
output_min();
|
|
motors.armed(true);
|
|
|
|
// initialise run time
|
|
last_run_time = millis();
|
|
|
|
// main run while the test is not complete
|
|
while(!test_complete) {
|
|
// 50hz loop
|
|
if( millis() - last_run_time > 20 ) {
|
|
last_run_time = millis();
|
|
|
|
// read radio input
|
|
read_radio();
|
|
|
|
// display throttle value
|
|
if (abs(g.rc_3.control_in-last_throttle) > 10) {
|
|
cliSerial->printf_P(PSTR("\nThr:%d"),g.rc_3.control_in);
|
|
last_throttle = g.rc_3.control_in;
|
|
}
|
|
|
|
// decode user input
|
|
if (cliSerial->available()) {
|
|
c = cliSerial->read();
|
|
if (c == 'a' || c == 'A') {
|
|
spin_motors = true;
|
|
spin_start_time = millis();
|
|
// display user's throttle level
|
|
cliSerial->printf_P(PSTR("\nSpin motors at:%d"),(int)g.rc_3.control_in);
|
|
// clear out any other use input queued up
|
|
while (cliSerial->available()) {
|
|
cliSerial->read();
|
|
}
|
|
}else{
|
|
// any other input ends the test
|
|
test_complete = true;
|
|
motors.armed(false);
|
|
}
|
|
}
|
|
|
|
// check if time to stop motors
|
|
if (spin_motors) {
|
|
if ((millis() - spin_start_time) > 2000) {
|
|
spin_motors = false;
|
|
cliSerial->printf_P(PSTR("\nMotors stopped"));
|
|
}
|
|
}
|
|
|
|
// output to motors
|
|
if (spin_motors) {
|
|
// pass pilot throttle through to motors
|
|
motors.throttle_pass_through();
|
|
}else{
|
|
// spin motors at minimum
|
|
output_min();
|
|
}
|
|
}
|
|
}
|
|
|
|
// stop motors
|
|
motors.output_min();
|
|
motors.armed(false);
|
|
|
|
// clear out any user input
|
|
while( cliSerial->available() ) {
|
|
cliSerial->read();
|
|
}
|
|
|
|
// display completion message
|
|
cliSerial->printf_P(PSTR("\nTest complete\n"));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
test_optflow(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
#if OPTFLOW == ENABLED
|
|
if(g.optflow_enabled) {
|
|
cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID));
|
|
print_hit_enter();
|
|
|
|
while(1) {
|
|
delay(200);
|
|
optflow.update();
|
|
cliSerial->printf_P(PSTR("dx:%d\t dy:%d\t squal:%d\n"),
|
|
optflow.dx,
|
|
optflow.dy,
|
|
optflow.surface_quality);
|
|
|
|
if(cliSerial->available() > 0) {
|
|
return (0);
|
|
}
|
|
}
|
|
} else {
|
|
cliSerial->printf_P(PSTR("OptFlow: "));
|
|
print_enabled(false);
|
|
}
|
|
return (0);
|
|
#else
|
|
return (0);
|
|
#endif // OPTFLOW == ENABLED
|
|
}
|
|
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1) {
|
|
cliSerial->printf_P(PSTR("Relay on\n"));
|
|
relay.on(0);
|
|
delay(3000);
|
|
if(cliSerial->available() > 0) {
|
|
return (0);
|
|
}
|
|
|
|
cliSerial->printf_P(PSTR("Relay off\n"));
|
|
relay.off(0);
|
|
delay(3000);
|
|
if(cliSerial->available() > 0) {
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
/*
|
|
* run a debug shell
|
|
*/
|
|
static int8_t
|
|
test_shell(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
hal.util->run_debug_shell(cliSerial);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
/*
|
|
* test the sonar
|
|
*/
|
|
static int8_t
|
|
test_sonar(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
#if CONFIG_SONAR == ENABLED
|
|
if(g.sonar_enabled == false) {
|
|
cliSerial->printf_P(PSTR("Sonar disabled\n"));
|
|
return (0);
|
|
}
|
|
|
|
// make sure sonar is initialised
|
|
init_sonar();
|
|
|
|
print_hit_enter();
|
|
while(1) {
|
|
delay(100);
|
|
|
|
cliSerial->printf_P(PSTR("Sonar: %d cm\n"), sonar->read());
|
|
|
|
if(cliSerial->available() > 0) {
|
|
return (0);
|
|
}
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
static void print_hit_enter()
|
|
{
|
|
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n"));
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|