ardupilot/libraries/SRV_Channel/SRV_Channels.cpp

443 lines
14 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
SRV_Channel.cpp - object to separate input and output channel
ranges, trim and reversal
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include "SRV_Channel.h"
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
#include <AP_CANManager/AP_CANManager.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
// To be replaced with macro saying if KDECAN library is included
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
#include <AP_KDECAN/AP_KDECAN.h>
#endif
#include <AP_ToshibaCAN/AP_ToshibaCAN.h>
#include <AP_PiccoloCAN/AP_PiccoloCAN.h>
#endif
#if NUM_SERVO_CHANNELS == 0
#pragma GCC diagnostic ignored "-Wtype-limits"
#endif
extern const AP_HAL::HAL& hal;
SRV_Channel *SRV_Channels::channels;
SRV_Channels *SRV_Channels::_singleton;
#ifndef HAL_BUILD_AP_PERIPH
AP_Volz_Protocol *SRV_Channels::volz_ptr;
AP_SBusOut *SRV_Channels::sbus_ptr;
AP_RobotisServo *SRV_Channels::robotis_ptr;
#if HAL_AP_FETTEC_ONEWIRE_ENABLED
AP_FETtecOneWire *SRV_Channels::fetteconwire_ptr;
#endif
#endif // HAL_BUILD_AP_PERIPH
uint16_t SRV_Channels::override_counter[NUM_SERVO_CHANNELS];
#if HAL_SUPPORT_RCOUT_SERIAL
AP_BLHeli *SRV_Channels::blheli_ptr;
#endif
uint16_t SRV_Channels::disabled_mask;
uint16_t SRV_Channels::digital_mask;
uint16_t SRV_Channels::reversible_mask;
bool SRV_Channels::disabled_passthrough;
bool SRV_Channels::initialised;
bool SRV_Channels::emergency_stop;
Bitmask<SRV_Channel::k_nr_aux_servo_functions> SRV_Channels::function_mask;
SRV_Channels::srv_function SRV_Channels::functions[SRV_Channel::k_nr_aux_servo_functions];
const AP_Param::GroupInfo SRV_Channels::var_info[] = {
#if (NUM_SERVO_CHANNELS >= 1)
// @Group: 1_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[0], "1_", 1, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 2)
// @Group: 2_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[1], "2_", 2, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 3)
// @Group: 3_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[2], "3_", 3, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 4)
// @Group: 4_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[3], "4_", 4, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 5)
// @Group: 5_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[4], "5_", 5, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 6)
// @Group: 6_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[5], "6_", 6, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 7)
// @Group: 7_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[6], "7_", 7, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 8)
// @Group: 8_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[7], "8_", 8, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 9)
// @Group: 9_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[8], "9_", 9, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 10)
// @Group: 10_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[9], "10_", 10, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 11)
// @Group: 11_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[10], "11_", 11, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 12)
// @Group: 12_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[11], "12_", 12, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 13)
// @Group: 13_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[12], "13_", 13, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 14)
// @Group: 14_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[13], "14_", 14, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 15)
// @Group: 15_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[14], "15_", 15, SRV_Channels, SRV_Channel),
#endif
#if (NUM_SERVO_CHANNELS >= 16)
// @Group: 16_
// @Path: SRV_Channel.cpp
AP_SUBGROUPINFO(obj_channels[15], "16_", 16, SRV_Channels, SRV_Channel),
#endif
#ifndef HAL_BUILD_AP_PERIPH
// @Param{Plane}: _AUTO_TRIM
// @DisplayName: Automatic servo trim
// @Description: This enables automatic servo trim in flight. Servos will be trimed in stabilized flight modes when the aircraft is close to level. Changes to servo trim will be saved every 10 seconds and will persist between flights. The automatic trim won't go more than 20% away from a centered trim.
// @Values: 0:Disable,1:Enable
// @User: Advanced
AP_GROUPINFO_FRAME("_AUTO_TRIM", 17, SRV_Channels, auto_trim, 0, AP_PARAM_FRAME_PLANE),
#endif
// @Param: _RATE
// @DisplayName: Servo default output rate
// @Description: This sets the default output rate in Hz for all outputs.
// @Range: 25 400
// @User: Advanced
// @Units: Hz
AP_GROUPINFO("_RATE", 18, SRV_Channels, default_rate, 50),
#ifndef HAL_BUILD_AP_PERIPH
// @Group: _VOLZ_
// @Path: ../AP_Volz_Protocol/AP_Volz_Protocol.cpp
AP_SUBGROUPINFO(volz, "_VOLZ_", 19, SRV_Channels, AP_Volz_Protocol),
// @Group: _SBUS_
// @Path: ../AP_SBusOut/AP_SBusOut.cpp
AP_SUBGROUPINFO(sbus, "_SBUS_", 20, SRV_Channels, AP_SBusOut),
#if HAL_SUPPORT_RCOUT_SERIAL
// @Group: _BLH_
// @Path: ../AP_BLHeli/AP_BLHeli.cpp
AP_SUBGROUPINFO(blheli, "_BLH_", 21, SRV_Channels, AP_BLHeli),
#endif
// @Group: _ROB_
// @Path: ../AP_RobotisServo/AP_RobotisServo.cpp
AP_SUBGROUPINFO(robotis, "_ROB_", 22, SRV_Channels, AP_RobotisServo),
#if HAL_AP_FETTEC_ONEWIRE_ENABLED
// @Group: _FTW_
// @Path: ../AP_FETtecOneWire/AP_FETtecOneWire.cpp
AP_SUBGROUPINFO(fetteconwire, "_FTW_", 25, SRV_Channels, AP_FETtecOneWire),
#endif
#endif // HAL_BUILD_AP_PERIPH
// @Param: _DSHOT_RATE
// @DisplayName: Servo DShot output rate
// @Description: This sets the DShot output rate for all outputs as a multiple of the loop rate. 0 sets the output rate to be fixed at 1Khz for low loop rates. This value should never be set below 500Hz.
// @Values: 0:1Khz,1:loop-rate,2:double loop-rate,3:triple loop-rate,4:quadruple loop rate
// @User: Advanced
AP_GROUPINFO("_DSHOT_RATE", 23, SRV_Channels, dshot_rate, 0),
// @Param: _DSHOT_ESC
// @DisplayName: Servo DShot ESC type
// @Description: This sets the DShot ESC type for all outputs. The ESC type affects the range of DShot commands available. None means that no dshot commands will be executed.
// @Values: 0:None,1:BLHeli32/BLHeli_S/Kiss
// @User: Advanced
AP_GROUPINFO("_DSHOT_ESC", 24, SRV_Channels, dshot_esc_type, 0),
AP_GROUPEND
};
/*
constructor
*/
SRV_Channels::SRV_Channels(void)
{
_singleton = this;
channels = obj_channels;
// set defaults from the parameter table
AP_Param::setup_object_defaults(this, var_info);
// setup ch_num on channels
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
channels[i].ch_num = i;
}
#ifndef HAL_BUILD_AP_PERIPH
volz_ptr = &volz;
sbus_ptr = &sbus;
robotis_ptr = &robotis;
#if HAL_AP_FETTEC_ONEWIRE_ENABLED
fetteconwire_ptr = &fetteconwire;
#endif
#if HAL_SUPPORT_RCOUT_SERIAL
blheli_ptr = &blheli;
#endif
#endif // HAL_BUILD_AP_PERIPH
}
// SRV_Channels initialization
void SRV_Channels::init(void)
{
// initialize BLHeli late so that all of the masks it might setup don't get trodden on by motor initialization
#if HAL_SUPPORT_RCOUT_SERIAL
blheli_ptr->init();
#endif
hal.rcout->set_dshot_rate(_singleton->dshot_rate, AP::scheduler().get_loop_rate_hz());
}
/*
save adjusted trims
*/
void SRV_Channels::save_trim(void)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (trimmed_mask & (1U<<i)) {
channels[i].servo_trim.set_and_save(channels[i].servo_trim.get());
}
}
trimmed_mask = 0;
}
void SRV_Channels::setup_failsafe_trim_all_non_motors(void)
{
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if (!SRV_Channel::is_motor(channels[i].get_function())) {
hal.rcout->set_failsafe_pwm(1U<<channels[i].ch_num, channels[i].servo_trim);
}
}
}
/*
run calc_pwm for all channels
*/
void SRV_Channels::calc_pwm(void)
{
WITH_SEMAPHORE(_singleton->override_counter_sem);
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
// check if channel has been locked out for this loop
// if it has, decrement the loop count for that channel
if (override_counter[i] == 0) {
channels[i].set_override(false);
} else {
channels[i].set_override(true);
override_counter[i]--;
}
channels[i].calc_pwm(functions[channels[i].function].output_scaled);
}
}
// set output value for a specific function channel as a pwm value
void SRV_Channels::set_output_pwm_chan(uint8_t chan, uint16_t value)
{
if (chan < NUM_SERVO_CHANNELS) {
channels[chan].set_output_pwm(value);
}
}
// set output value for a specific function channel as a pwm value with loop based timeout
// timeout_ms of zero will clear override of the channel
// minimum override is 1 MAIN_LOOP
void SRV_Channels::set_output_pwm_chan_timeout(uint8_t chan, uint16_t value, uint16_t timeout_ms)
{
WITH_SEMAPHORE(_singleton->override_counter_sem);
if (chan < NUM_SERVO_CHANNELS) {
const uint32_t loop_period_us = AP::scheduler().get_loop_period_us();
// round up so any non-zero requested value will result in at least one loop
const uint32_t loop_count = ((timeout_ms * 1000U) + (loop_period_us - 1U)) / loop_period_us;
override_counter[chan] = constrain_int32(loop_count, 0, UINT16_MAX);
channels[chan].set_override(true);
const bool had_pwm = SRV_Channel::have_pwm_mask & (1U<<chan);
channels[chan].set_output_pwm(value,true);
if (!had_pwm) {
// clear the have PWM mask so the channel will default back to the scaled value when timeout expires
// this is also cleared by set_output_scaled but that requires it to be re-called as some point
// after the timeout is applied
// note that we can't default back to a pre-override PWM value as it is not stored
// checking had_pwm means the PWM will not change after the timeout, this was the existing behaviour
SRV_Channel::have_pwm_mask &= ~(1U<<chan);
}
}
}
/*
wrapper around hal.rcout->cork()
*/
void SRV_Channels::cork()
{
hal.rcout->cork();
}
/*
wrapper around hal.rcout->push()
*/
void SRV_Channels::push()
{
hal.rcout->push();
#ifndef HAL_BUILD_AP_PERIPH
// give volz library a chance to update
volz_ptr->update();
// give sbus library a chance to update
sbus_ptr->update();
// give robotis library a chance to update
robotis_ptr->update();
#if HAL_AP_FETTEC_ONEWIRE_ENABLED
fetteconwire_ptr->update();
#endif
#if HAL_SUPPORT_RCOUT_SERIAL
// give blheli telemetry a chance to update
blheli_ptr->update_telemetry();
#endif
#endif // HAL_BUILD_AP_PERIPH
#if HAL_CANMANAGER_ENABLED
// push outputs to CAN
uint8_t can_num_drivers = AP::can().get_num_drivers();
for (uint8_t i = 0; i < can_num_drivers; i++) {
switch (AP::can().get_driver_type(i)) {
case AP_CANManager::Driver_Type_UAVCAN: {
AP_UAVCAN *ap_uavcan = AP_UAVCAN::get_uavcan(i);
if (ap_uavcan == nullptr) {
continue;
}
ap_uavcan->SRV_push_servos();
break;
}
case AP_CANManager::Driver_Type_KDECAN: {
// To be replaced with macro saying if KDECAN library is included
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
AP_KDECAN *ap_kdecan = AP_KDECAN::get_kdecan(i);
if (ap_kdecan == nullptr) {
continue;
}
ap_kdecan->update();
#endif
break;
}
case AP_CANManager::Driver_Type_ToshibaCAN: {
AP_ToshibaCAN *ap_tcan = AP_ToshibaCAN::get_tcan(i);
if (ap_tcan == nullptr) {
continue;
}
ap_tcan->update();
break;
}
#if HAL_PICCOLO_CAN_ENABLE
case AP_CANManager::Driver_Type_PiccoloCAN: {
AP_PiccoloCAN *ap_pcan = AP_PiccoloCAN::get_pcan(i);
if (ap_pcan == nullptr) {
continue;
}
ap_pcan->update();
break;
}
#endif
case AP_CANManager::Driver_Type_CANTester:
case AP_CANManager::Driver_Type_None:
default:
break;
}
}
#endif // HAL_NUM_CAN_IFACES
}
void SRV_Channels::zero_rc_outputs()
{
/* Send an invalid signal to the motors to prevent spinning due to
* neutral (1500) pwm pulse being cut short. For that matter,
* send an invalid signal to all channels to prevent
* undesired/unexpected behavior
*/
cork();
for (uint8_t i=0; i<NUM_RC_CHANNELS; i++) {
hal.rcout->write(i, 0);
}
push();
}