ardupilot/libraries/RC_Channel/RC_Channel_aux.cpp

167 lines
6.6 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include <APM_RC.h>
#include "RC_Channel_aux.h"
const AP_Param::GroupInfo RC_Channel_aux::var_info[] PROGMEM = {
AP_NESTEDGROUPINFO(RC_Channel, 0),
// @Param: FUNCTION
// @DisplayName: Function assigned to this APM servo output
// @Description: Setting this to Disabled(0) will disable this output, any other value will enable the corresponding function
// @Values: 0:Disabled,1:Manual,2:Flap,3:Flap_auto,4:Aileron,5:flaperon,6:mount_pan,7:mount_tilt,8:mount_roll,9:mount_open,10:camera_trigger,11:release
// @User: Standard
AP_GROUPINFO("FUNCTION", 1, RC_Channel_aux, function),
// @Param: ANGLE_MIN
// @DisplayName: Minimum physical angular position of the object that this servo output controls
// @Description: Minimum physical angular position of the object that this servo output controls, this could be for example a camera pan angle, an aileron angle, etc
// @Units: Degrees
// @Range: -180 180
// @Increment: .01
// @User: Standard
AP_GROUPINFO("ANGLE_MIN", 2, RC_Channel_aux, angle_min),
// @Param: ANGLE_MAX
// @DisplayName: Maximum physical angular position of the object that this servo output controls
// @Description: Maximum physical angular position of the object that this servo output controls, this could be for example a camera pan angle, an aileron angle, etc
// @Units: Degrees
// @Range: -180 180
// @Increment: .01
// @User: Standard
AP_GROUPINFO("ANGLE_MAX", 3, RC_Channel_aux, angle_max),
AP_GROUPEND
};
// Global pointer array, indexed by a "RC function enum" and points to the RC channel output assigned to that function/operation
RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions];
int16_t
RC_Channel_aux::closest_limit(int16_t angle)
{
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
int16_t min = angle_min / 10;
int16_t max = angle_max / 10;
// Make sure the angle lies in the interval [-180 .. 180[ degrees
while (angle < -1800) angle += 3600;
while (angle >= 1800) angle -= 3600;
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees
while (min < -1800) min += 3600;
while (min >= 1800) min -= 3600;
while (max < -1800) max += 3600;
while (max >= 1800) max -= 3600;
// This is done every time because the user might change the min, max values on the fly
set_range(min, max);
// If the angle is outside servo limits, saturate the angle to the closest limit
// On a circle the closest angular position must be carefully calculated to account for wrap-around
if ((angle < min) && (angle > max)){
// angle error if min limit is used
int16_t err_min = min - angle + (angle<min?0:3600); // add 360 degrees if on the "wrong side"
// angle error if max limit is used
int16_t err_max = angle - max + (angle>max?0:3600); // add 360 degrees if on the "wrong side"
angle = err_min<err_max?min:max;
}
servo_out = angle;
// convert angle to PWM using a linear transformation (ignores trimming because the camera limits might not be symmetric)
calc_pwm();
return angle;
}
// Gets the RC and integrates and then compares with the servo out angles to limit control input to servo travel.
// That way the user doesn't get lost. Rotationally.
void
RC_Channel_aux::rc_input(float *control_angle, int16_t angle)
{
if((radio_in < 1480 && angle < angle_max)||(radio_in > 1520 && angle > angle_min)){
*control_angle += ( 1500 - radio_in ) * .0001; // .0001 is the control speed scaler.
}
}
// Takes the desired servo angle(deg) and converts to microSeconds for PWM
// Like this: 45 deg = 2000 us ; -45 deg/1000 us. 1000us/(90*100 deg) = 0.1111111111111
void
RC_Channel_aux::angle_out(int16_t angle)
{
if(angle >= angle_max){
angle = angle_max;
}
if(angle <= angle_min){
angle = angle_min;
}
// Convert the angle*100 to pwm microseconds. 45 deg = 500 us.
radio_out = (/*_reverse * */ angle * 0.1111111) + 1500;
}
// map a function to a servo channel and output it
void
RC_Channel_aux::output_ch(unsigned char ch_nr)
{
// take care or two corner cases
switch(function)
{
case k_none: // disabled
return;
break;
case k_manual: // manual
radio_out = radio_in;
break;
}
_apm_rc->OutputCh(ch_nr, radio_out);
}
// Update the g_rc_function array of pointers to rc_x channels
// This is to be done before rc_init so that the channels get correctly initialized.
// It also should be called periodically because the user might change the configuration and
// expects the changes to take effect instantly
void update_aux_servo_function(RC_Channel_aux* rc_5, RC_Channel_aux* rc_6, RC_Channel_aux* rc_7, RC_Channel_aux* rc_8)
{
// positions 0..3 of this array never get used, but this is a stack array, so the entire array gets freed at the end of the function
RC_Channel_aux::Aux_servo_function_t aux_servo_function[4];
aux_servo_function[0] = (RC_Channel_aux::Aux_servo_function_t)rc_5->function.get();
aux_servo_function[1] = (RC_Channel_aux::Aux_servo_function_t)rc_6->function.get();
aux_servo_function[2] = (RC_Channel_aux::Aux_servo_function_t)rc_7->function.get();
aux_servo_function[3] = (RC_Channel_aux::Aux_servo_function_t)rc_8->function.get();
for (uint8_t i = 0; i < 4; i++) {
if (aux_servo_function[i] >= RC_Channel_aux::k_nr_aux_servo_functions) {
// invalid setting
aux_servo_function[i] = RC_Channel_aux::k_none;
}
}
// Assume that no auxiliary function is used
for (uint8_t i = 0; i < RC_Channel_aux::k_nr_aux_servo_functions ; i++)
{
g_rc_function[i] = NULL;
}
// assign the RC channel to each function
g_rc_function[aux_servo_function[0]] = rc_5;
g_rc_function[aux_servo_function[1]] = rc_6;
g_rc_function[aux_servo_function[2]] = rc_7;
g_rc_function[aux_servo_function[3]] = rc_8;
//set auxiliary ranges
G_RC_AUX(k_flap)->set_range(0,100);
G_RC_AUX(k_flap_auto)->set_range(0,100);
G_RC_AUX(k_aileron)->set_angle(4500);
G_RC_AUX(k_flaperon)->set_range(0,100);
G_RC_AUX(k_mount_yaw)->set_range(
g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_max / 10);
G_RC_AUX(k_mount_pitch)->set_range(
g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_max / 10);
G_RC_AUX(k_mount_roll)->set_range(
g_rc_function[RC_Channel_aux::k_mount_roll]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_mount_roll]->angle_max / 10);
G_RC_AUX(k_mount_open)->set_range(0,100);
G_RC_AUX(k_cam_trigger)->set_range(
g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_max / 10);
G_RC_AUX(k_egg_drop)->set_range(0,100);
}