ardupilot/libraries/AP_Motors/AP_MotorsHeli.cpp

872 lines
31 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsHeli.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: Angular location of swash servo #1
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, _servo1_pos, AP_MOTORS_HELI_SERVO1_POS),
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: Angular location of swash servo #2
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, _servo2_pos, AP_MOTORS_HELI_SERVO2_POS),
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: Angular location of swash servo #3
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, _servo3_pos, AP_MOTORS_HELI_SERVO3_POS),
// @Param: ROL_MAX
// @DisplayName: Swash Roll Angle Max
// @Description: Maximum roll angle of the swash plate
// @Range: 0 18000
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
// @Param: PIT_MAX
// @DisplayName: Swash Pitch Angle Max
// @Description: Maximum pitch angle of the swash plate
// @Range: 0 18000
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
// @Description: Lowest possible servo position for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
// @Description: Highest possible servo position for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
// @Description: Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
// @Param: TAIL_TYPE
// @DisplayName: Tail Type
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
// @User: Standard
AP_GROUPINFO("TAIL_TYPE",9, AP_MotorsHeli, _tail_type, AP_MOTORS_HELI_TAILTYPE_SERVO),
// @Param: SWASH_TYPE
// @DisplayName: Swash Type
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
// @User: Standard
AP_GROUPINFO("SWASH_TYPE",10, AP_MotorsHeli, _swash_type, AP_MOTORS_HELI_SWASH_CCPM),
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, _ext_gyro_gain, AP_MOTORS_HELI_EXT_GYRO_GAIN),
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually!
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, _servo_manual, 0),
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, _phase_angle, 0),
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, _collective_yaw_effect, 0),
// @Param: GOV_SETPOINT
// @DisplayName: External Motor Governor Setpoint
// @Description: PWM passed to the external motor governor when external governor is enabled
// @Range: 0 1000
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_SETPOINT", 15, AP_MotorsHeli, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT),
// @Param: RSC_MODE
// @DisplayName: Rotor Speed Control Mode
// @Description: Controls the source of the desired rotor speed, either ch8 or RSC_SETPOINT
// @Values: 0:None, 1:Ch8 Input, 2:SetPoint
// @User: Standard
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
// @Range: 0:NoFlybar 1:Flybar
// @User: Standard
AP_GROUPINFO("FLYBAR_MODE", 17, AP_MotorsHeli, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
// @Param: LAND_COL_MIN
// @DisplayName: Landing Collective Minimum
// @Description: Minimum collective position while landed or landing
// @Range: 0 500
// @Units: pwm
// @Increment: 1
// @User: Standard
AP_GROUPINFO("LAND_COL_MIN", 18, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN),
// @Param: RSC_RAMP_TIME
// @DisplayName: RSC Ramp Time
// @Description: Time in seconds for the output to the main rotor's ESC to reach full speed
// @Range: 0 60
// @Units: Seconds
// @User: Standard
AP_GROUPINFO("RSC_RAMP_TIME", 19, AP_MotorsHeli,_rsc_ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME),
// @Param: RSC_RUNUP_TIME
// @DisplayName: RSC Runup Time
// @Description: Time in seconds for the main rotor to reach full speed. Must be longer than RSC_RAMP_TIME
// @Range: 0 60
// @Units: Seconds
// @User: Standard
AP_GROUPINFO("RSC_RUNUP_TIME", 20, AP_MotorsHeli,_rsc_runup_time, AP_MOTORS_HELI_RSC_RUNUP_TIME),
// @Param: TAIL_SPEED
// @DisplayName: Direct Drive VarPitch Tail ESC speed
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("TAIL_SPEED", 21, AP_MotorsHeli, _direct_drive_tailspeed, AP_MOTOR_HELI_DDTAIL_DEFAULT),
// @Param: RSC_CRITICAL
// @DisplayName: Critical Rotor Speed
// @Description: Rotor speed below which flight is not possible
// @Range: 0 1000
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_CRITICAL", 22, AP_MotorsHeli, _rsc_critical, AP_MOTORS_HELI_RSC_CRITICAL),
// parameters 1 ~ 29 reserved for tradheli
// parameters 30 ~ 39 reserved for tricopter
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files)
AP_GROUPEND
};
//
// public methods
//
// init
void AP_MotorsHeli::Init()
{
// set update rate
set_update_rate(_speed_hz);
// ensure inputs are not passed through to servos
_servo_manual = 0;
// initialise some scalers
recalc_scalers();
// initialise swash plate
init_swash();
// disable channels 7 and 8 from being used by RC_Channel_aux
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_AUX]);
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_RSC]);
}
// set update rate to motors - a value in hertz
void AP_MotorsHeli::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask =
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]);
hal.rcout->set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsHeli::enable()
{
// enable output channels
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); // swash servo 1
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); // swash servo 2
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3])); // swash servo 3
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); // yaw
hal.rcout->enable_ch(AP_MOTORS_HELI_AUX); // output for gyro gain or direct drive variable pitch tail motor
hal.rcout->enable_ch(AP_MOTORS_HELI_RSC); // output for main rotor esc
}
// output - sends commands to the servos
void AP_MotorsHeli::output()
{
// update throttle filter
update_throttle_filter();
if (_flags.armed) {
if (!_flags.interlock) {
output_armed_zero_throttle();
} else if (_flags.stabilizing) {
output_armed_stabilizing();
} else {
output_armed_not_stabilizing();
}
} else {
output_disarmed();
}
};
// output_min - sets servos to neutral point
void AP_MotorsHeli::output_min()
{
// move swash to mid
move_swash(0,0,500,0);
// override limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = false;
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// swash servo 1
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm);
break;
case 2:
// swash servo 2
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm);
break;
case 3:
// swash servo 3
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm);
break;
case 4:
// external gyro & tail servo
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
write_aux(_ext_gyro_gain);
}
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm);
break;
case 5:
// main rotor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_HELI_RSC]), pwm);
break;
default:
// do nothing
break;
}
}
// allow_arming - check if it's safe to arm
bool AP_MotorsHeli::allow_arming() const
{
// returns false if main rotor speed is not zero
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _rotor_speed_estimate > 0) {
return false;
}
// all other cases it is OK to arm
return true;
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli::parameter_check() const
{
// returns false if _rsc_setpoint is not higher than _rsc_critical as this would not allow rotor_runup_complete to ever return true
if (_rsc_critical >= _rsc_setpoint) {
return false;
}
// all other cases parameters are OK
return true;
}
// return true if the main rotor is up to speed
bool AP_MotorsHeli::rotor_runup_complete() const
{
// if we have no control of motors, assume pilot has spun them up
if (_rsc_mode == AP_MOTORS_HELI_RSC_MODE_NONE) {
return true;
}
return _heliflags.rotor_runup_complete;
}
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
void AP_MotorsHeli::recalc_scalers()
{
// recalculate rotor ramp up increment
if (_rsc_ramp_time <= 0) {
_rsc_ramp_time = 1;
}
_rsc_ramp_increment = 1000.0f / (_rsc_ramp_time * _loop_rate);
// recalculate rotor runup increment
if (_rsc_runup_time <= 0 ) {
_rsc_runup_time = 1;
}
if (_rsc_runup_time < _rsc_ramp_time) {
_rsc_runup_time = _rsc_ramp_time;
}
_rsc_runup_increment = 1000.0f / (_rsc_runup_time * _loop_rate);
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli::get_motor_mask()
{
// heli uses channels 1,2,3,4,7 and 8
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_AUX | 1U << AP_MOTORS_HELI_RSC);
}
void AP_MotorsHeli::output_armed_not_stabilizing()
{
// stabilizing servos always operate for helicopters
output_armed_stabilizing();
}
// sends commands to the motors
void AP_MotorsHeli::output_armed_stabilizing()
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if (_servo_manual == 1) {
_roll_control_input = _roll_radio_passthrough;
_pitch_control_input = _pitch_radio_passthrough;
_throttle_control_input = _throttle_radio_passthrough;
_yaw_control_input = _yaw_radio_passthrough;
}
move_swash(_roll_control_input, _pitch_control_input, _throttle_control_input, _yaw_control_input);
// update rotor and direct drive esc speeds
rsc_control();
}
// output_armed_zero_throttle - sends commands to the motors
void AP_MotorsHeli::output_armed_zero_throttle()
{
// stabilizing servos always operate for helicopters
// ToDo: Bring RSC Master On/Off into this function
output_armed_stabilizing();
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
// stabilizing servos always operate for helicopters
output_armed_stabilizing();
}
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli::reset_swash()
{
// free up servo ranges
_servo_1.radio_min = 1000;
_servo_1.radio_max = 2000;
_servo_2.radio_min = 1000;
_servo_2.radio_max = 2000;
_servo_3.radio_min = 1000;
_servo_3.radio_max = 2000;
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set roll, pitch and throttle scaling
_roll_scaler = 1.0f;
_pitch_scaler = 1.0f;
_collective_scalar = ((float)(_throttle_radio_max - _throttle_radio_min))/1000.0f;
_collective_scalar_manual = 1.0f;
// we must be in set-up mode so mark swash as uninitialised
_heliflags.swash_initialised = false;
}
// init_swash - initialise the swash plate
void AP_MotorsHeli::init_swash()
{
// swash servo initialisation
_servo_1.set_range(0,1000);
_servo_2.set_range(0,1000);
_servo_3.set_range(0,1000);
_servo_4.set_angle(4500);
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = 1000;
_collective_max = 2000;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f;
// determine roll, pitch and collective input scaling
_roll_scaler = (float)_roll_max/4500.0f;
_pitch_scaler = (float)_pitch_max/4500.0f;
_collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// servo min/max values
_servo_1.radio_min = 1000;
_servo_1.radio_max = 2000;
_servo_2.radio_min = 1000;
_servo_2.radio_max = 2000;
_servo_3.radio_min = 1000;
_servo_3.radio_max = 2000;
// mark swash as initialised
_heliflags.swash_initialised = true;
}
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli::calculate_roll_pitch_collective_factors()
{
if (_swash_type == AP_MOTORS_HELI_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - (_phase_angle + _delta_phase_angle)));
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - (_phase_angle + _delta_phase_angle)));
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - (_phase_angle + _delta_phase_angle)));
// pitch factors
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - (_phase_angle + _delta_phase_angle)));
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - (_phase_angle + _delta_phase_angle)));
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - (_phase_angle + _delta_phase_angle)));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
}
//
// heli_move_swash - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
{
int16_t yaw_offset = 0;
int16_t coll_out_scaled;
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)?
// check if we need to free up the swash
if (_heliflags.swash_initialised) {
reset_swash();
}
// To-Do: This equation seems to be wrong. It probably restricts swash movement so that swash setup doesn't work right.
// _collective_scalar should probably not be used or set to 1?
coll_out_scaled = coll_in * _collective_scalar + _throttle_radio_min - 1000;
}else{ // regular flight mode
// check if we need to reinitialise the swash
if (!_heliflags.swash_initialised) {
init_swash();
}
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified roll_max and pitch_max
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
roll_out = roll_out * _roll_scaler;
if (roll_out < -_roll_max) {
roll_out = -_roll_max;
limit.roll_pitch = true;
}
if (roll_out > _roll_max) {
roll_out = _roll_max;
limit.roll_pitch = true;
}
// scale pitch and update limits
pitch_out = pitch_out * _pitch_scaler;
if (pitch_out < -_pitch_max) {
pitch_out = -_pitch_max;
limit.roll_pitch = true;
}
if (pitch_out > _pitch_max) {
pitch_out = _pitch_max;
limit.roll_pitch = true;
}
// constrain collective input
_collective_out = coll_in;
if (_collective_out <= 0) {
_collective_out = 0;
limit.throttle_lower = true;
}
if (_collective_out >= 1000) {
_collective_out = 1000;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && _collective_out < _land_collective_min) {
_collective_out = _land_collective_min;
limit.throttle_lower = true;
}
// scale collective pitch
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
// rudder feed forward based on collective
// the feed-forward is not required when the motor is shut down and not creating torque
// also not required if we are using external gyro
if ((_desired_rotor_speed > 0) && _tail_type != AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
// sanity check collective_yaw_effect
_collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTOR_HELI_COLYAW_RANGE, AP_MOTOR_HELI_COLYAW_RANGE);
yaw_offset = _collective_yaw_effect * abs(_collective_out - _collective_mid_pwm);
}
}
// swashplate servos
_servo_1.servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1.radio_trim-1500);
_servo_2.servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2.radio_trim-1500);
if (_swash_type == AP_MOTORS_HELI_SWASH_H1) {
_servo_1.servo_out += 500;
_servo_2.servo_out += 500;
}
_servo_3.servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3.radio_trim-1500);
_servo_4.servo_out = yaw_out + yaw_offset;
// constrain yaw and update limits
if (_servo_4.servo_out < -4500) {
_servo_4.servo_out = -4500;
limit.yaw = true;
}
if (_servo_4.servo_out > 4500) {
_servo_4.servo_out = 4500;
limit.yaw = true;
}
// use servo_out to calculate pwm_out and radio_out
_servo_1.calc_pwm();
_servo_2.calc_pwm();
_servo_3.calc_pwm();
_servo_4.calc_pwm();
// actually move the servos
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo_1.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo_2.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo_3.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo_4.radio_out);
// output gain to exernal gyro
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
write_aux(_ext_gyro_gain);
}
}
// rsc_control - update value to send to tail and main rotor's ESC
// desired_rotor_speed is a desired speed from 0 to 1000
void AP_MotorsHeli::rsc_control()
{
// if disarmed output minimums
if (!armed()) {
// shut down tail rotor
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH || _tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH) {
_tail_direct_drive_out = 0;
write_aux(_tail_direct_drive_out);
}
// shut down main rotor
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE) {
_rotor_out = 0;
_rotor_speed_estimate = 0;
write_rsc(_rotor_out);
}
return;
}
// ramp up or down main rotor and tail
if (_desired_rotor_speed > 0) {
// ramp up tail rotor (this does nothing if not using direct drive variable pitch tail)
tail_ramp(_direct_drive_tailspeed);
// note: this always returns true if not using direct drive variable pitch tail
if (tail_rotor_runup_complete()) {
rotor_ramp(_desired_rotor_speed);
}
}else{
// shutting down main rotor
rotor_ramp(0);
// shut-down tail rotor. Note: this does nothing if not using direct drive vairable pitch tail
tail_ramp(0);
}
// direct drive fixed pitch tail servo gets copy of yaw servo out (ch4) while main rotor is running
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH) {
// output fixed-pitch speed control if Ch8 is high
if (_desired_rotor_speed > 0 || _rotor_speed_estimate > 0) {
// copy yaw output to tail esc
write_aux(_servo_4.servo_out);
}else{
write_aux(0);
}
}
}
// rotor_ramp - ramps rotor towards target
// result put in _rotor_out and sent to ESC
void AP_MotorsHeli::rotor_ramp(int16_t rotor_target)
{
// return immediately if not ramping required
if (_rsc_mode == AP_MOTORS_HELI_RSC_MODE_NONE) {
_rotor_out = rotor_target;
return;
}
// range check rotor_target
rotor_target = constrain_int16(rotor_target,0,1000);
// ramp rotor esc output towards target
if (_rotor_out < rotor_target) {
// allow rotor out to jump to rotor's current speed
if (_rotor_out < _rotor_speed_estimate) {
_rotor_out = _rotor_speed_estimate;
}
// ramp up slowly to target
_rotor_out += _rsc_ramp_increment;
if (_rotor_out > rotor_target) {
_rotor_out = rotor_target;
}
}else{
// ramping down happens instantly
_rotor_out = rotor_target;
}
// ramp rotor speed estimate towards rotor out
if (_rotor_speed_estimate < _rotor_out) {
_rotor_speed_estimate += _rsc_runup_increment;
if (_rotor_speed_estimate > _rotor_out) {
_rotor_speed_estimate = _rotor_out;
}
}else{
_rotor_speed_estimate -= _rsc_runup_increment;
if (_rotor_speed_estimate < _rotor_out) {
_rotor_speed_estimate = _rotor_out;
}
}
// set runup complete flag
if (!_heliflags.rotor_runup_complete && rotor_target > 0 && _rotor_speed_estimate >= rotor_target) {
_heliflags.rotor_runup_complete = true;
}
if (_heliflags.rotor_runup_complete && _rotor_speed_estimate <= _rsc_critical) {
_heliflags.rotor_runup_complete = false;
}
// output to rsc servo
write_rsc(_rotor_out);
}
// tail_ramp - ramps tail motor towards target. Only used for direct drive variable pitch tails
// results put into _tail_direct_drive_out and sent to ESC
void AP_MotorsHeli::tail_ramp(int16_t tail_target)
{
// return immediately if not ramping required
if (_tail_type != AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
_tail_direct_drive_out = tail_target;
return;
}
// range check tail_target
tail_target = constrain_int16(tail_target,0,1000);
// ramp towards target
if (_tail_direct_drive_out < tail_target) {
_tail_direct_drive_out += AP_MOTORS_HELI_TAIL_RAMP_INCREMENT;
if (_tail_direct_drive_out >= tail_target) {
_tail_direct_drive_out = tail_target;
}
}else if(_tail_direct_drive_out > tail_target) {
_tail_direct_drive_out -= AP_MOTORS_HELI_TAIL_RAMP_INCREMENT;
if (_tail_direct_drive_out < tail_target) {
_tail_direct_drive_out = tail_target;
}
}
// output to tail servo
write_aux(_tail_direct_drive_out);
}
// return true if the tail rotor is up to speed
bool AP_MotorsHeli::tail_rotor_runup_complete()
{
// always return true if not using direct drive variable pitch tails
if (_tail_type != AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
return true;
}
// check speed
return (armed() && _tail_direct_drive_out >= _direct_drive_tailspeed);
}
// write_rsc - outputs pwm onto output rsc channel (ch8)
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli::write_rsc(int16_t servo_out)
{
_servo_rsc.servo_out = servo_out;
_servo_rsc.calc_pwm();
hal.rcout->write(AP_MOTORS_HELI_RSC, _servo_rsc.radio_out);
}
// write_aux - outputs pwm onto output aux channel (ch7)
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli::write_aux(int16_t servo_out)
{
_servo_aux.servo_out = servo_out;
_servo_aux.calc_pwm();
hal.rcout->write(AP_MOTORS_HELI_AUX, _servo_aux.radio_out);
}
// set_delta_phase_angle for setting variable phase angle compensation and force
// recalculation of collective factors
void AP_MotorsHeli::set_delta_phase_angle(int16_t angle)
{
angle = constrain_int16(angle, -90, 90);
_delta_phase_angle = angle;
calculate_roll_pitch_collective_factors();
}
// update the throttle input filter
void AP_MotorsHeli::update_throttle_filter()
{
_throttle_filter.apply(_throttle_in, 1.0f/_loop_rate);
// constrain throttle signal to 0-1000
_throttle_control_input = constrain_float(_throttle_filter.get(),0.0f,1000.0f);
}
// set_radio_passthrough used to pass radio inputs directly to outputs
void AP_MotorsHeli::set_radio_passthrough(int16_t radio_roll_input, int16_t radio_pitch_input, int16_t radio_throttle_input, int16_t radio_yaw_input)
{
_roll_radio_passthrough = radio_roll_input;
_pitch_radio_passthrough = radio_pitch_input;
_throttle_radio_passthrough = radio_throttle_input;
_yaw_radio_passthrough = radio_yaw_input;
}
// reset_radio_passthrough used to reset all radio inputs to center
void AP_MotorsHeli::reset_radio_passthrough()
{
_roll_radio_passthrough = 0;
_pitch_radio_passthrough = 0;
_throttle_radio_passthrough = 500;
_yaw_radio_passthrough = 0;
}