ardupilot/libraries/RC_Channel/RC_Channel.h

157 lines
4.5 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file RC_Channel.h
/// @brief RC_Channel manager, with EEPROM-backed storage of constants.
#ifndef RC_Channel_h
#define RC_Channel_h
#include <AP_Common.h>
// TODO is this include really necessary ?
#include <stdint.h>
/// @class RC_Channel
/// @brief Object managing one RC channel
class RC_Channel{
protected:
AP_Var_group _group; // must be before all vars to keep ctor init order correct
public:
/// Constructor
///
/// @param key EEPROM storage key for the channel trim parameters.
/// @param name Optional name for the group.
///
RC_Channel(AP_Var::Key key, const prog_char_t *name) :
_group(key, name),
radio_min (&_group, 0, 1500, name ? PSTR("MIN") : 0), // suppress name if group has no name
radio_trim(&_group, 1, 1500, name ? PSTR("TRIM") : 0),
radio_max (&_group, 2, 1500, name ? PSTR("MAX") : 0),
_high(1),
_filter(true),
_reverse (&_group, 3, 1, name ? PSTR("REV") : 0),
dead_zone(0),
scale_output(1.0)
{}
// setup min and max radio values in CLI
void update_min_max();
void zero_min_max();
// startup
void load_eeprom(void);
void save_eeprom(void);
void save_trim(void);
void set_filter(bool filter);
void set_type(uint8_t t);
// setup the control preferences
void set_range(int low, int high);
void set_angle(int angle);
void set_reverse(bool reverse);
bool get_reverse(void);
// read input from APM_RC - create a control_in value
void set_pwm(int pwm);
// pwm is stored here
int16_t radio_in;
// call after first set_pwm
void trim();
// did our read come in 50µs below the min?
bool get_failsafe(void);
// value generated from PWM
int16_t control_in;
int16_t dead_zone; // used to keep noise down and create a dead zone.
int control_mix(float value);
// current values to the servos - degrees * 100 (approx assuming servo is -45 to 45 degrees except [3] is 0 to 100
int16_t servo_out;
// generate PWM from servo_out value
void calc_pwm(void);
// PWM is without the offset from radio_min
int16_t pwm_out;
int16_t radio_out;
AP_Int16 radio_min;
AP_Int16 radio_trim;
AP_Int16 radio_max;
// includes offset from PWM
//int16_t get_radio_out(void);
int16_t pwm_to_angle();
float norm_input();
float norm_output();
int16_t angle_to_pwm();
int16_t pwm_to_range();
int16_t range_to_pwm();
float scale_output;
private:
bool _filter;
AP_Int8 _reverse;
uint8_t _type;
int16_t _high;
int16_t _low;
};
/// @class RC_Channel_aux
/// @brief Object managing one aux. RC channel (CH5-8), with information about its function
class RC_Channel_aux : public RC_Channel{
public:
/// Constructor
///
/// @param key EEPROM storage key for the channel trim parameters.
/// @param name Optional name for the group.
///
RC_Channel_aux(AP_Var::Key key, const prog_char_t *name) :
RC_Channel(key, name),
function (&_group, 4, k_none, name ? PSTR("FUNCTION") : 0), // suppress name if group has no name
angle_min (&_group, 5, -4500, name ? PSTR("ANGLE_MIN") : 0), // assume -45 degrees min deflection
angle_max (&_group, 6, 4500, name ? PSTR("ANGLE_MAX") : 0) // assume 45 degrees max deflection
{}
typedef enum
{
k_none = 0, // 0=disabled
k_mount_yaw = 1, // 1=mount yaw (pan)
k_mount_pitch = 2, // 2=mount pitch (tilt)
k_mount_roll = 3, // 3=mount roll
k_cam_trigger = 4, // 4=camera trigger
k_cam_open = 5, // 5=camera open
k_flap = 6, // 6=flap
k_flap_auto = 7, // 7=flap automated
k_aileron = 8, // 8=aileron
k_flaperon = 9, // 9=flaperon (flaps and aileron combined, needs two independent servos one for each wing)
k_egg_drop = 10, // 10=egg drop
k_manual = 11, // 11=manual, just pass-thru the RC in signal
k_nr_aux_servo_functions // This must be the last enum value (only add new values _before_ this one)
} Aux_servo_function_t;
AP_VARDEF(Aux_servo_function_t, Aux_srv_func); // defines AP_Aux_srv_func
AP_Aux_srv_func function; // 0=disabled, 1=mount yaw (pan), 2=mount pitch (tilt), 3=mount roll, 4=camera trigger, 5=camera open, 6=flap, 7=flap auto, 8=aileron, 9=flaperon, 10=egg drop, 11=manual
AP_Int16 angle_min; // min angle limit of actuated surface in 0.01 degree units
AP_Int16 angle_max; // max angle limit of actuated surface in 0.01 degree units
int16_t closest_limit(int16_t angle); // saturate to the closest angle limit if outside of min max angle interval
void output_ch(unsigned char ch_nr); // map a function to a servo channel and output it
};
#endif