mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
1013 lines
32 KiB
C++
1013 lines
32 KiB
C++
/*
|
|
Lead developer: Andrew Tridgell
|
|
|
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher, Paul Riseborough, Brandon Jones, Jon Challinger, Tom Pittenger
|
|
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon
|
|
|
|
Please contribute your ideas! See http://dev.ardupilot.org for details
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "Plane.h"
|
|
|
|
#define SCHED_TASK(func, rate_hz, max_time_micros) SCHED_TASK_CLASS(Plane, &plane, func, rate_hz, max_time_micros)
|
|
|
|
|
|
/*
|
|
scheduler table - all regular tasks are listed here, along with how
|
|
often they should be called (in Hz) and the maximum time
|
|
they are expected to take (in microseconds)
|
|
*/
|
|
const AP_Scheduler::Task Plane::scheduler_tasks[] = {
|
|
// Units: Hz us
|
|
SCHED_TASK(ahrs_update, 400, 400),
|
|
SCHED_TASK(read_radio, 50, 100),
|
|
SCHED_TASK(check_short_failsafe, 50, 100),
|
|
SCHED_TASK(update_speed_height, 50, 200),
|
|
SCHED_TASK(update_flight_mode, 400, 100),
|
|
SCHED_TASK(stabilize, 400, 100),
|
|
SCHED_TASK(set_servos, 400, 100),
|
|
SCHED_TASK(read_control_switch, 7, 100),
|
|
SCHED_TASK(gcs_retry_deferred, 50, 500),
|
|
SCHED_TASK(update_GPS_50Hz, 50, 300),
|
|
SCHED_TASK(update_GPS_10Hz, 10, 400),
|
|
SCHED_TASK(navigate, 10, 150),
|
|
SCHED_TASK(update_compass, 10, 200),
|
|
SCHED_TASK(read_airspeed, 10, 100),
|
|
SCHED_TASK(update_alt, 10, 200),
|
|
SCHED_TASK(adjust_altitude_target, 10, 200),
|
|
SCHED_TASK(afs_fs_check, 10, 100),
|
|
SCHED_TASK(gcs_update, 50, 500),
|
|
SCHED_TASK(gcs_data_stream_send, 50, 500),
|
|
SCHED_TASK(update_events, 50, 150),
|
|
SCHED_TASK_CLASS(AP_BattMonitor, &plane.battery, read, 10, 300),
|
|
SCHED_TASK(compass_accumulate, 50, 200),
|
|
SCHED_TASK(barometer_accumulate, 50, 150),
|
|
SCHED_TASK(update_notify, 50, 300),
|
|
SCHED_TASK(read_rangefinder, 50, 100),
|
|
SCHED_TASK(ice_update, 10, 100),
|
|
SCHED_TASK(compass_cal_update, 50, 50),
|
|
SCHED_TASK(accel_cal_update, 10, 50),
|
|
#if OPTFLOW == ENABLED
|
|
SCHED_TASK(update_optical_flow, 50, 50),
|
|
#endif
|
|
SCHED_TASK(one_second_loop, 1, 400),
|
|
SCHED_TASK(check_long_failsafe, 3, 400),
|
|
SCHED_TASK(read_receiver_rssi, 10, 100),
|
|
SCHED_TASK(rpm_update, 10, 100),
|
|
SCHED_TASK(airspeed_ratio_update, 1, 100),
|
|
SCHED_TASK(update_mount, 50, 100),
|
|
SCHED_TASK(update_trigger, 50, 100),
|
|
SCHED_TASK_CLASS(AP_Scheduler, &plane.scheduler, update_logging, 0.2, 100),
|
|
SCHED_TASK(compass_save, 0.1, 200),
|
|
SCHED_TASK(Log_Write_Fast, 25, 300),
|
|
SCHED_TASK(update_logging1, 25, 300),
|
|
SCHED_TASK(update_logging2, 25, 300),
|
|
SCHED_TASK(update_soaring, 50, 400),
|
|
SCHED_TASK(parachute_check, 10, 200),
|
|
SCHED_TASK(terrain_update, 10, 200),
|
|
SCHED_TASK(update_is_flying_5Hz, 5, 100),
|
|
SCHED_TASK(dataflash_periodic, 50, 400),
|
|
SCHED_TASK(ins_periodic, 50, 50),
|
|
SCHED_TASK(avoidance_adsb_update, 10, 100),
|
|
SCHED_TASK(button_update, 5, 100),
|
|
#if STATS_ENABLED == ENABLED
|
|
SCHED_TASK(stats_update, 1, 100),
|
|
#endif
|
|
#if GRIPPER_ENABLED == ENABLED
|
|
SCHED_TASK_CLASS(AP_Gripper, &plane.g2.gripper, update, 10, 75),
|
|
#endif
|
|
};
|
|
|
|
constexpr int8_t Plane::_failsafe_priorities[5];
|
|
|
|
#if STATS_ENABLED == ENABLED
|
|
/*
|
|
update AP_Stats
|
|
*/
|
|
void Plane::stats_update(void)
|
|
{
|
|
g2.stats.update();
|
|
}
|
|
#endif
|
|
|
|
void Plane::setup()
|
|
{
|
|
// load the default values of variables listed in var_info[]
|
|
AP_Param::setup_sketch_defaults();
|
|
|
|
AP_Notify::flags.failsafe_battery = false;
|
|
|
|
rssi.init();
|
|
|
|
init_ardupilot();
|
|
|
|
// initialise the main loop scheduler
|
|
scheduler.init(&scheduler_tasks[0], ARRAY_SIZE(scheduler_tasks), MASK_LOG_PM);
|
|
}
|
|
|
|
void Plane::loop()
|
|
{
|
|
scheduler.loop();
|
|
G_Dt = scheduler.get_loop_period_s();
|
|
}
|
|
|
|
void Plane::update_soft_armed()
|
|
{
|
|
hal.util->set_soft_armed(arming.is_armed() &&
|
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
|
|
DataFlash.set_vehicle_armed(hal.util->get_soft_armed());
|
|
}
|
|
|
|
// update AHRS system
|
|
void Plane::ahrs_update()
|
|
{
|
|
update_soft_armed();
|
|
|
|
#if HIL_SUPPORT
|
|
if (g.hil_mode == 1) {
|
|
// update hil before AHRS update
|
|
gcs_update();
|
|
}
|
|
#endif
|
|
|
|
ahrs.update();
|
|
|
|
if (should_log(MASK_LOG_IMU)) {
|
|
Log_Write_IMU();
|
|
}
|
|
|
|
// calculate a scaled roll limit based on current pitch
|
|
roll_limit_cd = aparm.roll_limit_cd;
|
|
pitch_limit_min_cd = aparm.pitch_limit_min_cd;
|
|
|
|
if (!quadplane.tailsitter_active()) {
|
|
roll_limit_cd *= ahrs.cos_pitch();
|
|
pitch_limit_min_cd *= fabsf(ahrs.cos_roll());
|
|
}
|
|
|
|
// updated the summed gyro used for ground steering and
|
|
// auto-takeoff. Dot product of DCM.c with gyro vector gives earth
|
|
// frame yaw rate
|
|
steer_state.locked_course_err += ahrs.get_yaw_rate_earth() * G_Dt;
|
|
steer_state.locked_course_err = wrap_PI(steer_state.locked_course_err);
|
|
|
|
// update inertial_nav for quadplane
|
|
quadplane.inertial_nav.update(G_Dt);
|
|
}
|
|
|
|
/*
|
|
update 50Hz speed/height controller
|
|
*/
|
|
void Plane::update_speed_height(void)
|
|
{
|
|
if (auto_throttle_mode) {
|
|
// Call TECS 50Hz update. Note that we call this regardless of
|
|
// throttle suppressed, as this needs to be running for
|
|
// takeoff detection
|
|
SpdHgt_Controller->update_50hz();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
update camera mount
|
|
*/
|
|
void Plane::update_mount(void)
|
|
{
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
update camera trigger
|
|
*/
|
|
void Plane::update_trigger(void)
|
|
{
|
|
#if CAMERA == ENABLED
|
|
camera.update_trigger();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
read and update compass
|
|
*/
|
|
void Plane::update_compass(void)
|
|
{
|
|
if (g.compass_enabled && compass.read()) {
|
|
ahrs.set_compass(&compass);
|
|
if (should_log(MASK_LOG_COMPASS) && !ahrs.have_ekf_logging()) {
|
|
DataFlash.Log_Write_Compass(compass);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
if the compass is enabled then try to accumulate a reading
|
|
*/
|
|
void Plane::compass_accumulate(void)
|
|
{
|
|
if (g.compass_enabled) {
|
|
compass.accumulate();
|
|
}
|
|
}
|
|
|
|
/*
|
|
try to accumulate a baro reading
|
|
*/
|
|
void Plane::barometer_accumulate(void)
|
|
{
|
|
barometer.accumulate();
|
|
}
|
|
|
|
/*
|
|
do 10Hz logging
|
|
*/
|
|
void Plane::update_logging1(void)
|
|
{
|
|
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
|
|
Log_Write_Attitude();
|
|
}
|
|
|
|
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_IMU))
|
|
Log_Write_IMU();
|
|
|
|
if (should_log(MASK_LOG_ATTITUDE_MED))
|
|
Log_Write_AOA_SSA();
|
|
}
|
|
|
|
/*
|
|
do 10Hz logging - part2
|
|
*/
|
|
void Plane::update_logging2(void)
|
|
{
|
|
if (should_log(MASK_LOG_CTUN))
|
|
Log_Write_Control_Tuning();
|
|
|
|
if (should_log(MASK_LOG_NTUN))
|
|
Log_Write_Nav_Tuning();
|
|
|
|
if (should_log(MASK_LOG_RC))
|
|
Log_Write_RC();
|
|
|
|
if (should_log(MASK_LOG_IMU))
|
|
DataFlash.Log_Write_Vibration();
|
|
}
|
|
|
|
|
|
/*
|
|
check for AFS failsafe check
|
|
*/
|
|
void Plane::afs_fs_check(void)
|
|
{
|
|
// perform AFS failsafe checks
|
|
afs.check(failsafe.last_heartbeat_ms, geofence_breached(), failsafe.AFS_last_valid_rc_ms);
|
|
}
|
|
|
|
|
|
/*
|
|
update aux servo mappings
|
|
*/
|
|
void Plane::update_aux(void)
|
|
{
|
|
SRV_Channels::enable_aux_servos();
|
|
}
|
|
|
|
void Plane::one_second_loop()
|
|
{
|
|
// send a heartbeat
|
|
gcs().send_message(MSG_HEARTBEAT);
|
|
|
|
// make it possible to change control channel ordering at runtime
|
|
set_control_channels();
|
|
|
|
#if HAVE_PX4_MIXER
|
|
if (!hal.util->get_soft_armed() && (last_mixer_crc == -1)) {
|
|
// if disarmed try to configure the mixer
|
|
setup_failsafe_mixing();
|
|
}
|
|
#endif // CONFIG_HAL_BOARD
|
|
|
|
// make it possible to change orientation at runtime
|
|
ahrs.set_orientation();
|
|
|
|
adsb.set_stall_speed_cm(aparm.airspeed_min);
|
|
|
|
// sync MAVLink system ID
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
update_aux();
|
|
|
|
// update notify flags
|
|
AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false);
|
|
AP_Notify::flags.pre_arm_gps_check = true;
|
|
AP_Notify::flags.armed = arming.is_armed() || arming.arming_required() == AP_Arming::NO;
|
|
|
|
#if AP_TERRAIN_AVAILABLE
|
|
if (should_log(MASK_LOG_GPS)) {
|
|
terrain.log_terrain_data(DataFlash);
|
|
}
|
|
#endif
|
|
|
|
// update home position if armed and gps position has
|
|
// changed. Update every 5s at most
|
|
if (!arming.is_armed() &&
|
|
gps.last_message_time_ms() - last_home_update_ms > 5000 &&
|
|
gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
last_home_update_ms = gps.last_message_time_ms();
|
|
update_home();
|
|
|
|
// reset the landing altitude correction
|
|
landing.alt_offset = 0;
|
|
}
|
|
|
|
// update error mask of sensors and subsystems. The mask uses the
|
|
// MAV_SYS_STATUS_* values from mavlink. If a bit is set then it
|
|
// indicates that the sensor or subsystem is present but not
|
|
// functioning correctly
|
|
update_sensor_status_flags();
|
|
}
|
|
|
|
void Plane::compass_save()
|
|
{
|
|
if (g.compass_enabled &&
|
|
compass.get_learn_type() >= Compass::LEARN_INTERNAL &&
|
|
!hal.util->get_soft_armed()) {
|
|
/*
|
|
only save offsets when disarmed
|
|
*/
|
|
compass.save_offsets();
|
|
}
|
|
}
|
|
|
|
void Plane::terrain_update(void)
|
|
{
|
|
#if AP_TERRAIN_AVAILABLE
|
|
terrain.update();
|
|
#endif
|
|
}
|
|
|
|
|
|
void Plane::ins_periodic(void)
|
|
{
|
|
ins.periodic();
|
|
}
|
|
|
|
void Plane::dataflash_periodic(void)
|
|
{
|
|
DataFlash.periodic_tasks();
|
|
}
|
|
|
|
/*
|
|
once a second update the airspeed calibration ratio
|
|
*/
|
|
void Plane::airspeed_ratio_update(void)
|
|
{
|
|
if (!airspeed.enabled() ||
|
|
gps.status() < AP_GPS::GPS_OK_FIX_3D ||
|
|
gps.ground_speed() < 4) {
|
|
// don't calibrate when not moving
|
|
return;
|
|
}
|
|
if (airspeed.get_airspeed() < aparm.airspeed_min &&
|
|
gps.ground_speed() < (uint32_t)aparm.airspeed_min) {
|
|
// don't calibrate when flying below the minimum airspeed. We
|
|
// check both airspeed and ground speed to catch cases where
|
|
// the airspeed ratio is way too low, which could lead to it
|
|
// never coming up again
|
|
return;
|
|
}
|
|
if (labs(ahrs.roll_sensor) > roll_limit_cd ||
|
|
ahrs.pitch_sensor > aparm.pitch_limit_max_cd ||
|
|
ahrs.pitch_sensor < pitch_limit_min_cd) {
|
|
// don't calibrate when going beyond normal flight envelope
|
|
return;
|
|
}
|
|
const Vector3f &vg = gps.velocity();
|
|
airspeed.update_calibration(vg, aparm.airspeed_max);
|
|
gcs_send_airspeed_calibration(vg);
|
|
}
|
|
|
|
|
|
/*
|
|
read the GPS and update position
|
|
*/
|
|
void Plane::update_GPS_50Hz(void)
|
|
{
|
|
// get position from AHRS
|
|
have_position = ahrs.get_position(current_loc);
|
|
ahrs.get_relative_position_D_home(relative_altitude);
|
|
relative_altitude *= -1.0f;
|
|
|
|
gps.update();
|
|
}
|
|
|
|
/*
|
|
read update GPS position - 10Hz update
|
|
*/
|
|
void Plane::update_GPS_10Hz(void)
|
|
{
|
|
static uint32_t last_gps_msg_ms;
|
|
if (gps.last_message_time_ms() != last_gps_msg_ms && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
last_gps_msg_ms = gps.last_message_time_ms();
|
|
|
|
if (ground_start_count > 1) {
|
|
ground_start_count--;
|
|
} else if (ground_start_count == 1) {
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0 && current_loc.lng == 0) {
|
|
ground_start_count = 5;
|
|
|
|
} else {
|
|
init_home();
|
|
|
|
// set system clock for log timestamps
|
|
uint64_t gps_timestamp = gps.time_epoch_usec();
|
|
|
|
hal.util->set_system_clock(gps_timestamp);
|
|
|
|
// update signing timestamp
|
|
GCS_MAVLINK::update_signing_timestamp(gps_timestamp);
|
|
|
|
if (g.compass_enabled) {
|
|
// Set compass declination automatically
|
|
const Location &loc = gps.location();
|
|
compass.set_initial_location(loc.lat, loc.lng);
|
|
}
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
// see if we've breached the geo-fence
|
|
geofence_check(false);
|
|
|
|
#if CAMERA == ENABLED
|
|
camera.update();
|
|
#endif
|
|
|
|
// update wind estimate
|
|
ahrs.estimate_wind();
|
|
} else if (gps.status() < AP_GPS::GPS_OK_FIX_3D && ground_start_count != 0) {
|
|
// lost 3D fix, start again
|
|
ground_start_count = 5;
|
|
}
|
|
|
|
calc_gndspeed_undershoot();
|
|
}
|
|
|
|
/*
|
|
main handling for AUTO mode
|
|
*/
|
|
void Plane::handle_auto_mode(void)
|
|
{
|
|
uint16_t nav_cmd_id;
|
|
|
|
if (mission.state() != AP_Mission::MISSION_RUNNING) {
|
|
// this could happen if AP_Landing::restart_landing_sequence() returns false which would only happen if:
|
|
// restart_landing_sequence() is called when not executing a NAV_LAND or there is no previous nav point
|
|
set_mode(RTL, MODE_REASON_MISSION_END);
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Aircraft in auto without a running mission");
|
|
return;
|
|
}
|
|
|
|
nav_cmd_id = mission.get_current_nav_cmd().id;
|
|
|
|
if (quadplane.in_vtol_auto()) {
|
|
quadplane.control_auto(next_WP_loc);
|
|
} else if (nav_cmd_id == MAV_CMD_NAV_TAKEOFF ||
|
|
(nav_cmd_id == MAV_CMD_NAV_LAND && flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND)) {
|
|
takeoff_calc_roll();
|
|
takeoff_calc_pitch();
|
|
calc_throttle();
|
|
} else if (nav_cmd_id == MAV_CMD_NAV_LAND) {
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
|
|
// allow landing to restrict the roll limits
|
|
nav_roll_cd = landing.constrain_roll(nav_roll_cd, g.level_roll_limit*100UL);
|
|
|
|
if (landing.is_throttle_suppressed()) {
|
|
// if landing is considered complete throttle is never allowed, regardless of landing type
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0);
|
|
} else {
|
|
calc_throttle();
|
|
}
|
|
} else {
|
|
// we are doing normal AUTO flight, the special cases
|
|
// are for takeoff and landing
|
|
if (nav_cmd_id != MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT) {
|
|
steer_state.hold_course_cd = -1;
|
|
}
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
}
|
|
}
|
|
|
|
/*
|
|
main flight mode dependent update code
|
|
*/
|
|
void Plane::update_flight_mode(void)
|
|
{
|
|
enum FlightMode effective_mode = control_mode;
|
|
if (control_mode == AUTO && g.auto_fbw_steer == 42) {
|
|
effective_mode = FLY_BY_WIRE_A;
|
|
}
|
|
|
|
if (effective_mode != AUTO) {
|
|
// hold_course is only used in takeoff and landing
|
|
steer_state.hold_course_cd = -1;
|
|
}
|
|
|
|
// ensure we are fly-forward when we are flying as a pure fixed
|
|
// wing aircraft. This helps the EKF produce better state
|
|
// estimates as it can make stronger assumptions
|
|
if (quadplane.in_vtol_mode() ||
|
|
quadplane.in_assisted_flight()) {
|
|
ahrs.set_fly_forward(false);
|
|
} else if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
|
|
ahrs.set_fly_forward(landing.is_flying_forward());
|
|
} else {
|
|
ahrs.set_fly_forward(true);
|
|
}
|
|
|
|
switch (effective_mode)
|
|
{
|
|
case AUTO:
|
|
handle_auto_mode();
|
|
break;
|
|
|
|
case AVOID_ADSB:
|
|
case GUIDED:
|
|
if (auto_state.vtol_loiter && quadplane.available()) {
|
|
quadplane.guided_update();
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
|
|
case RTL:
|
|
case LOITER:
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case TRAINING: {
|
|
training_manual_roll = false;
|
|
training_manual_pitch = false;
|
|
update_load_factor();
|
|
|
|
// if the roll is past the set roll limit, then
|
|
// we set target roll to the limit
|
|
if (ahrs.roll_sensor >= roll_limit_cd) {
|
|
nav_roll_cd = roll_limit_cd;
|
|
} else if (ahrs.roll_sensor <= -roll_limit_cd) {
|
|
nav_roll_cd = -roll_limit_cd;
|
|
} else {
|
|
training_manual_roll = true;
|
|
nav_roll_cd = 0;
|
|
}
|
|
|
|
// if the pitch is past the set pitch limits, then
|
|
// we set target pitch to the limit
|
|
if (ahrs.pitch_sensor >= aparm.pitch_limit_max_cd) {
|
|
nav_pitch_cd = aparm.pitch_limit_max_cd;
|
|
} else if (ahrs.pitch_sensor <= pitch_limit_min_cd) {
|
|
nav_pitch_cd = pitch_limit_min_cd;
|
|
} else {
|
|
training_manual_pitch = true;
|
|
nav_pitch_cd = 0;
|
|
}
|
|
if (fly_inverted()) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ACRO: {
|
|
// handle locked/unlocked control
|
|
if (acro_state.locked_roll) {
|
|
nav_roll_cd = acro_state.locked_roll_err;
|
|
} else {
|
|
nav_roll_cd = ahrs.roll_sensor;
|
|
}
|
|
if (acro_state.locked_pitch) {
|
|
nav_pitch_cd = acro_state.locked_pitch_cd;
|
|
} else {
|
|
nav_pitch_cd = ahrs.pitch_sensor;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AUTOTUNE:
|
|
case FLY_BY_WIRE_A: {
|
|
// set nav_roll and nav_pitch using sticks
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
float pitch_input = channel_pitch->norm_input();
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd = pitch_input * aparm.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd = -(pitch_input * pitch_limit_min_cd);
|
|
}
|
|
adjust_nav_pitch_throttle();
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
if (fly_inverted()) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
if (failsafe.rc_failsafe && g.fs_action_short == FS_ACTION_SHORT_FBWA) {
|
|
// FBWA failsafe glide
|
|
nav_roll_cd = 0;
|
|
nav_pitch_cd = 0;
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
|
|
}
|
|
if (g.fbwa_tdrag_chan > 0) {
|
|
// check for the user enabling FBWA taildrag takeoff mode
|
|
bool tdrag_mode = (RC_Channels::get_radio_in(g.fbwa_tdrag_chan-1) > 1700);
|
|
if (tdrag_mode && !auto_state.fbwa_tdrag_takeoff_mode) {
|
|
if (auto_state.highest_airspeed < g.takeoff_tdrag_speed1) {
|
|
auto_state.fbwa_tdrag_takeoff_mode = true;
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "FBWA tdrag mode");
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FLY_BY_WIRE_B:
|
|
// Thanks to Yury MonZon for the altitude limit code!
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
update_fbwb_speed_height();
|
|
break;
|
|
|
|
case CRUISE:
|
|
/*
|
|
in CRUISE mode we use the navigation code to control
|
|
roll when heading is locked. Heading becomes unlocked on
|
|
any aileron or rudder input
|
|
*/
|
|
if (channel_roll->get_control_in() != 0 || channel_rudder->get_control_in() != 0) {
|
|
cruise_state.locked_heading = false;
|
|
cruise_state.lock_timer_ms = 0;
|
|
}
|
|
|
|
if (!cruise_state.locked_heading) {
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
} else {
|
|
calc_nav_roll();
|
|
}
|
|
update_fbwb_speed_height();
|
|
break;
|
|
|
|
case STABILIZE:
|
|
nav_roll_cd = 0;
|
|
nav_pitch_cd = 0;
|
|
// throttle is passthrough
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// we have no GPS installed and have lost radio contact
|
|
// or we just want to fly around in a gentle circle w/o GPS,
|
|
// holding altitude at the altitude we set when we
|
|
// switched into the mode
|
|
nav_roll_cd = roll_limit_cd / 3;
|
|
update_load_factor();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case MANUAL:
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, channel_roll->get_control_in_zero_dz());
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, channel_pitch->get_control_in_zero_dz());
|
|
steering_control.steering = steering_control.rudder = channel_rudder->get_control_in_zero_dz();
|
|
break;
|
|
|
|
case QSTABILIZE:
|
|
case QHOVER:
|
|
case QLOITER:
|
|
case QLAND:
|
|
case QRTL: {
|
|
// set nav_roll and nav_pitch using sticks
|
|
int16_t roll_limit = MIN(roll_limit_cd, quadplane.aparm.angle_max);
|
|
nav_roll_cd = (channel_roll->get_control_in() / 4500.0) * roll_limit;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit, roll_limit);
|
|
float pitch_input = channel_pitch->norm_input();
|
|
// Scale from normalized input [-1,1] to centidegrees
|
|
if (quadplane.tailsitter_active()) {
|
|
// For tailsitters, the pitch range is symmetrical: [-Q_ANGLE_MAX,Q_ANGLE_MAX]
|
|
nav_pitch_cd = pitch_input * quadplane.aparm.angle_max;
|
|
} else {
|
|
// pitch is further constrained by LIM_PITCH_MIN/MAX which may impose
|
|
// tighter (possibly asymmetrical) limits than Q_ANGLE_MAX
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd = pitch_input * MIN(aparm.pitch_limit_max_cd, quadplane.aparm.angle_max);
|
|
} else {
|
|
nav_pitch_cd = pitch_input * MIN(-pitch_limit_min_cd, quadplane.aparm.angle_max);
|
|
}
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case INITIALISING:
|
|
// handled elsewhere
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Plane::update_navigation()
|
|
{
|
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
|
|
// ------------------------------------------------------------------------
|
|
|
|
uint16_t radius = 0;
|
|
uint16_t qrtl_radius = abs(g.rtl_radius);
|
|
if (qrtl_radius == 0) {
|
|
qrtl_radius = abs(aparm.loiter_radius);
|
|
}
|
|
|
|
switch(control_mode) {
|
|
case AUTO:
|
|
if (ahrs.home_is_set()) {
|
|
mission.update();
|
|
}
|
|
break;
|
|
|
|
case RTL:
|
|
if (quadplane.available() && quadplane.rtl_mode == 1 &&
|
|
(nav_controller->reached_loiter_target() ||
|
|
location_passed_point(current_loc, prev_WP_loc, next_WP_loc) ||
|
|
auto_state.wp_distance < MAX(qrtl_radius, quadplane.stopping_distance())) &&
|
|
AP_HAL::millis() - last_mode_change_ms > 1000) {
|
|
/*
|
|
for a quadplane in RTL mode we switch to QRTL when we
|
|
are within the maximum of the stopping distance and the
|
|
RTL_RADIUS
|
|
*/
|
|
set_mode(QRTL, MODE_REASON_UNKNOWN);
|
|
break;
|
|
} else if (g.rtl_autoland == 1 &&
|
|
!auto_state.checked_for_autoland &&
|
|
reached_loiter_target() &&
|
|
labs(altitude_error_cm) < 1000) {
|
|
// we've reached the RTL point, see if we have a landing sequence
|
|
if (mission.jump_to_landing_sequence()) {
|
|
// switch from RTL -> AUTO
|
|
set_mode(AUTO, MODE_REASON_UNKNOWN);
|
|
}
|
|
|
|
// prevent running the expensive jump_to_landing_sequence
|
|
// on every loop
|
|
auto_state.checked_for_autoland = true;
|
|
}
|
|
else if (g.rtl_autoland == 2 &&
|
|
!auto_state.checked_for_autoland) {
|
|
// Go directly to the landing sequence
|
|
if (mission.jump_to_landing_sequence()) {
|
|
// switch from RTL -> AUTO
|
|
set_mode(AUTO, MODE_REASON_UNKNOWN);
|
|
}
|
|
|
|
// prevent running the expensive jump_to_landing_sequence
|
|
// on every loop
|
|
auto_state.checked_for_autoland = true;
|
|
}
|
|
radius = abs(g.rtl_radius);
|
|
if (radius > 0) {
|
|
loiter.direction = (g.rtl_radius < 0) ? -1 : 1;
|
|
}
|
|
// fall through to LOITER
|
|
FALLTHROUGH;
|
|
|
|
case LOITER:
|
|
case AVOID_ADSB:
|
|
case GUIDED:
|
|
update_loiter(radius);
|
|
break;
|
|
|
|
case CRUISE:
|
|
update_cruise();
|
|
break;
|
|
|
|
case MANUAL:
|
|
case STABILIZE:
|
|
case TRAINING:
|
|
case INITIALISING:
|
|
case ACRO:
|
|
case FLY_BY_WIRE_A:
|
|
case AUTOTUNE:
|
|
case FLY_BY_WIRE_B:
|
|
case CIRCLE:
|
|
case QSTABILIZE:
|
|
case QHOVER:
|
|
case QLOITER:
|
|
case QLAND:
|
|
case QRTL:
|
|
// nothing to do
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
set the flight stage
|
|
*/
|
|
void Plane::set_flight_stage(AP_Vehicle::FixedWing::FlightStage fs)
|
|
{
|
|
if (fs == flight_stage) {
|
|
return;
|
|
}
|
|
|
|
landing.handle_flight_stage_change(fs == AP_Vehicle::FixedWing::FLIGHT_LAND);
|
|
|
|
if (fs == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND) {
|
|
gcs().send_text(MAV_SEVERITY_NOTICE, "Landing aborted, climbing to %dm",
|
|
auto_state.takeoff_altitude_rel_cm/100);
|
|
}
|
|
|
|
flight_stage = fs;
|
|
Log_Write_Status();
|
|
}
|
|
|
|
void Plane::update_alt()
|
|
{
|
|
barometer.update();
|
|
|
|
// calculate the sink rate.
|
|
float sink_rate;
|
|
Vector3f vel;
|
|
if (ahrs.get_velocity_NED(vel)) {
|
|
sink_rate = vel.z;
|
|
} else if (gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.have_vertical_velocity()) {
|
|
sink_rate = gps.velocity().z;
|
|
} else {
|
|
sink_rate = -barometer.get_climb_rate();
|
|
}
|
|
|
|
// low pass the sink rate to take some of the noise out
|
|
auto_state.sink_rate = 0.8f * auto_state.sink_rate + 0.2f*sink_rate;
|
|
|
|
geofence_check(true);
|
|
|
|
update_flight_stage();
|
|
|
|
if (auto_throttle_mode && !throttle_suppressed) {
|
|
|
|
float distance_beyond_land_wp = 0;
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND && location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) {
|
|
distance_beyond_land_wp = get_distance(current_loc, next_WP_loc);
|
|
}
|
|
|
|
SpdHgt_Controller->update_pitch_throttle(relative_target_altitude_cm(),
|
|
target_airspeed_cm,
|
|
flight_stage,
|
|
distance_beyond_land_wp,
|
|
get_takeoff_pitch_min_cd(),
|
|
throttle_nudge,
|
|
tecs_hgt_afe(),
|
|
aerodynamic_load_factor);
|
|
}
|
|
}
|
|
|
|
/*
|
|
recalculate the flight_stage
|
|
*/
|
|
void Plane::update_flight_stage(void)
|
|
{
|
|
// Update the speed & height controller states
|
|
if (auto_throttle_mode && !throttle_suppressed) {
|
|
if (control_mode==AUTO) {
|
|
if (quadplane.in_vtol_auto()) {
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_VTOL);
|
|
} else if (auto_state.takeoff_complete == false) {
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_TAKEOFF);
|
|
} else if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_LAND) {
|
|
if (landing.is_commanded_go_around() || flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND) {
|
|
// abort mode is sticky, it must complete while executing NAV_LAND
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND);
|
|
} else if (landing.get_abort_throttle_enable() && channel_throttle->get_control_in() >= 90 &&
|
|
landing.request_go_around()) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Landing aborted via throttle");
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND);
|
|
} else {
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_LAND);
|
|
}
|
|
} else if (quadplane.in_assisted_flight()) {
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_VTOL);
|
|
} else {
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_NORMAL);
|
|
}
|
|
} else {
|
|
// If not in AUTO then assume normal operation for normal TECS operation.
|
|
// This prevents TECS from being stuck in the wrong stage if you switch from
|
|
// AUTO to, say, FBWB during a landing, an aborted landing or takeoff.
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_NORMAL);
|
|
}
|
|
} else if (quadplane.in_vtol_mode() ||
|
|
quadplane.in_assisted_flight()) {
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_VTOL);
|
|
} else {
|
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_NORMAL);
|
|
}
|
|
|
|
// tell AHRS the airspeed to true airspeed ratio
|
|
airspeed.set_EAS2TAS(barometer.get_EAS2TAS());
|
|
}
|
|
|
|
|
|
|
|
|
|
#if OPTFLOW == ENABLED
|
|
// called at 50hz
|
|
void Plane::update_optical_flow(void)
|
|
{
|
|
static uint32_t last_of_update = 0;
|
|
|
|
// exit immediately if not enabled
|
|
if (!optflow.enabled()) {
|
|
return;
|
|
}
|
|
|
|
// read from sensor
|
|
optflow.update();
|
|
|
|
// write to log and send to EKF if new data has arrived
|
|
if (optflow.last_update() != last_of_update) {
|
|
last_of_update = optflow.last_update();
|
|
uint8_t flowQuality = optflow.quality();
|
|
Vector2f flowRate = optflow.flowRate();
|
|
Vector2f bodyRate = optflow.bodyRate();
|
|
const Vector3f &posOffset = optflow.get_pos_offset();
|
|
ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update, posOffset);
|
|
Log_Write_Optflow();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
If land_DisarmDelay is enabled (non-zero), check for a landing then auto-disarm after time expires
|
|
|
|
only called from AP_Landing, when the landing library is ready to disarm
|
|
*/
|
|
void Plane::disarm_if_autoland_complete()
|
|
{
|
|
if (landing.get_disarm_delay() > 0 &&
|
|
!is_flying() &&
|
|
arming.arming_required() != AP_Arming::NO &&
|
|
arming.is_armed()) {
|
|
/* we have auto disarm enabled. See if enough time has passed */
|
|
if (millis() - auto_state.last_flying_ms >= landing.get_disarm_delay()*1000UL) {
|
|
if (disarm_motors()) {
|
|
gcs().send_text(MAV_SEVERITY_INFO,"Auto disarmed");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
the height above field elevation that we pass to TECS
|
|
*/
|
|
float Plane::tecs_hgt_afe(void)
|
|
{
|
|
/*
|
|
pass the height above field elevation as the height above
|
|
the ground when in landing, which means that TECS gets the
|
|
rangefinder information and thus can know when the flare is
|
|
coming.
|
|
*/
|
|
float hgt_afe;
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
|
|
hgt_afe = height_above_target();
|
|
hgt_afe -= rangefinder_correction();
|
|
} else {
|
|
// when in normal flight we pass the hgt_afe as relative
|
|
// altitude to home
|
|
hgt_afe = relative_altitude;
|
|
}
|
|
return hgt_afe;
|
|
}
|
|
|
|
AP_HAL_MAIN_CALLBACKS(&plane);
|