ardupilot/libraries/AP_HAL_ChibiOS/Util.cpp
Andy Piper f3f3056dba AP_HAL_ChibiOS: add support for dshot commands to rcout
add support for dshot beepcodes through tonealarm
add support for dshot reversal and command queue
add support for dshot commands to all channels
correctly manage channel enablement in PWM groups
Correctly send dshot commands when using bi-dir dshot
allow reversible settings to be changed
ChibiOS: allow more than one type of ESC for dshot commands
Only execute reverse/reversible commands on BLHeli
add support for checking active ESCS
mark ESCs active when bdshot telemetry is returned
allow dshot alarm to be disabled
allow priroitized dshot commands
2021-05-05 17:41:24 +10:00

580 lines
19 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "Util.h"
#include <ch.h>
#include "RCOutput.h"
#include "UARTDriver.h"
#include "hwdef/common/stm32_util.h"
#include "hwdef/common/watchdog.h"
#include "hwdef/common/flash.h"
#include <AP_ROMFS/AP_ROMFS.h>
#include <AP_Common/ExpandingString.h>
#include "sdcard.h"
#include "shared_dma.h"
#include <AP_Common/ExpandingString.h>
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
#include <AP_InertialSensor/AP_InertialSensor.h>
#endif
#if HAL_WITH_IO_MCU
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
extern const AP_HAL::HAL& hal;
using namespace ChibiOS;
#if CH_CFG_USE_HEAP == TRUE
/**
how much free memory do we have in bytes.
*/
uint32_t Util::available_memory(void)
{
// from malloc.c in hwdef
return mem_available();
}
/*
Special Allocation Routines
*/
void* Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) {
return malloc_dma(size);
} else if (mem_type == AP_HAL::Util::MEM_FAST) {
return malloc_fastmem(size);
} else {
return calloc(1, size);
}
}
void Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (ptr != NULL) {
free(ptr);
}
}
#ifdef ENABLE_HEAP
void *Util::allocate_heap_memory(size_t size)
{
void *buf = malloc(size);
if (buf == nullptr) {
return nullptr;
}
memory_heap_t *heap = (memory_heap_t *)malloc(sizeof(memory_heap_t));
if (heap != nullptr) {
chHeapObjectInit(heap, buf, size);
}
return heap;
}
/*
realloc implementation thanks to wolfssl, used by AP_Scripting
*/
void *Util::std_realloc(void *addr, size_t size)
{
if (size == 0) {
free(addr);
return nullptr;
}
if (addr == nullptr) {
return malloc(size);
}
void *new_mem = malloc(size);
if (new_mem != nullptr) {
memcpy(new_mem, addr, chHeapGetSize(addr) > size ? size : chHeapGetSize(addr));
free(addr);
}
return new_mem;
}
void *Util::heap_realloc(void *heap, void *ptr, size_t new_size)
{
if (heap == nullptr) {
return nullptr;
}
if (new_size == 0) {
if (ptr != nullptr) {
chHeapFree(ptr);
}
return nullptr;
}
if (ptr == nullptr) {
return chHeapAlloc((memory_heap_t *)heap, new_size);
}
void *new_mem = chHeapAlloc((memory_heap_t *)heap, new_size);
if (new_mem != nullptr) {
memcpy(new_mem, ptr, chHeapGetSize(ptr) > new_size ? new_size : chHeapGetSize(ptr));
chHeapFree(ptr);
}
return new_mem;
}
#endif // ENABLE_HEAP
#endif // CH_CFG_USE_HEAP
/*
get safety switch state
*/
Util::safety_state Util::safety_switch_state(void)
{
#if HAL_USE_PWM == TRUE
return ((RCOutput *)hal.rcout)->_safety_switch_state();
#else
return SAFETY_NONE;
#endif
}
#ifdef HAL_PWM_ALARM
struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = HAL_PWM_ALARM;
#endif
#if defined(HAL_PWM_ALARM) || HAL_DSHOT_ALARM
uint8_t Util::_toneAlarm_types = 0;
bool Util::toneAlarm_init(uint8_t types)
{
#ifdef HAL_PWM_ALARM
_toneAlarm_pwm_group.pwm_cfg.period = 1000;
pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg);
#endif
_toneAlarm_types = types;
return true;
}
void Util::toneAlarm_set_buzzer_tone(float frequency, float volume, uint32_t duration_ms)
{
#ifdef HAL_PWM_ALARM
if (is_zero(frequency) || is_zero(volume)) {
pwmDisableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan);
} else {
pwmChangePeriod(_toneAlarm_pwm_group.pwm_drv,
roundf(_toneAlarm_pwm_group.pwm_cfg.frequency/frequency));
pwmEnableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan, roundf(volume*_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)/2);
}
#endif
#if HAL_DSHOT_ALARM
// don't play the motors while flying
if ((_toneAlarm_types & ALARM_DSHOT) && (get_soft_armed() || hal.rcout->get_dshot_esc_type() != RCOutput::DSHOT_ESC_BLHELI)) {
return;
}
if (is_zero(frequency)) { // silence
hal.rcout->send_dshot_command(RCOutput::DSHOT_RESET, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1047) { // C
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP1, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1175) { // D
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP2, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1319) { // E
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP3, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1397) { // F
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP4, RCOutput::ALL_CHANNELS, duration_ms);
} else { // G+
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP5, RCOutput::ALL_CHANNELS, duration_ms);
}
#endif // HAL_PWM_ALARM
}
#endif
/*
set HW RTC in UTC microseconds
*/
void Util::set_hw_rtc(uint64_t time_utc_usec)
{
stm32_set_utc_usec(time_utc_usec);
}
/*
get system clock in UTC microseconds
*/
uint64_t Util::get_hw_rtc() const
{
return stm32_get_utc_usec();
}
#if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_NO_ROMFS_SUPPORT)
#if defined(HAL_NO_GCS) || defined(HAL_BOOTLOADER_BUILD)
#define Debug(fmt, args ...) do { hal.console->printf(fmt, ## args); } while (0)
#else
#include <GCS_MAVLink/GCS.h>
#define Debug(fmt, args ...) do { gcs().send_text(MAV_SEVERITY_INFO, fmt, ## args); } while (0)
#endif
Util::FlashBootloader Util::flash_bootloader()
{
uint32_t fw_size;
const char *fw_name = "bootloader.bin";
EXPECT_DELAY_MS(11000);
const uint8_t *fw = AP_ROMFS::find_decompress(fw_name, fw_size);
if (!fw) {
Debug("failed to find %s\n", fw_name);
return FlashBootloader::NOT_AVAILABLE;
}
// make sure size is multiple of 32
fw_size = (fw_size + 31U) & ~31U;
bool uptodate = true;
const uint32_t addr = hal.flash->getpageaddr(0);
if (memcmp(fw, (const void*)addr, fw_size) != 0) {
uptodate = false;
}
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
// see if we should store persistent parameters along with the
// bootloader. We only do this on boards using a single sector for
// the bootloader. The persistent parameters are stored as text at
// the end of the sector
const int32_t space_available = hal.flash->getpagesize(0) - int32_t(fw_size);
ExpandingString persistent_params {}, old_persistent_params {};
if (get_persistent_params(persistent_params) &&
space_available >= persistent_params.get_length() &&
(!load_persistent_params(old_persistent_params) ||
strcmp(persistent_params.get_string(),
old_persistent_params.get_string()) != 0)) {
// persistent parameters have changed, we will update
// bootloader to allow storage of the params
uptodate = false;
}
#endif
if (uptodate) {
Debug("Bootloader up-to-date\n");
AP_ROMFS::free(fw);
return FlashBootloader::NO_CHANGE;
}
Debug("Erasing\n");
uint32_t erased_size = 0;
uint8_t erase_page = 0;
while (erased_size < fw_size) {
uint32_t page_size = hal.flash->getpagesize(erase_page);
if (page_size == 0) {
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
hal.scheduler->expect_delay_ms(1000);
if (!hal.flash->erasepage(erase_page)) {
Debug("Erase %u failed\n", erase_page);
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
erased_size += page_size;
erase_page++;
}
Debug("Flashing %s @%08x\n", fw_name, (unsigned int)addr);
const uint8_t max_attempts = 10;
hal.flash->keep_unlocked(true);
for (uint8_t i=0; i<max_attempts; i++) {
hal.scheduler->expect_delay_ms(1000);
bool ok = hal.flash->write(addr, fw, fw_size);
if (!ok) {
Debug("Flash failed! (attempt=%u/%u)\n",
i+1,
max_attempts);
hal.scheduler->delay(100);
continue;
}
Debug("Flash OK\n");
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
if (persistent_params.get_length()) {
const uint32_t ofs = hal.flash->getpagesize(0) - persistent_params.get_length();
hal.flash->write(addr+ofs, persistent_params.get_string(), persistent_params.get_length());
}
#endif
hal.flash->keep_unlocked(false);
AP_ROMFS::free(fw);
return FlashBootloader::OK;
}
hal.flash->keep_unlocked(false);
Debug("Flash failed after %u attempts\n", max_attempts);
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
#endif // !HAL_NO_FLASH_SUPPORT && !HAL_NO_ROMFS_SUPPORT
/*
display system identifer - board type and serial number
*/
bool Util::get_system_id(char buf[40])
{
uint8_t serialid[12];
char board_name[14];
memcpy(serialid, (const void *)UDID_START, 12);
strncpy(board_name, CHIBIOS_SHORT_BOARD_NAME, 13);
board_name[13] = 0;
// this format is chosen to match the format used by HAL_PX4
snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
board_name,
(unsigned)serialid[3], (unsigned)serialid[2], (unsigned)serialid[1], (unsigned)serialid[0],
(unsigned)serialid[7], (unsigned)serialid[6], (unsigned)serialid[5], (unsigned)serialid[4],
(unsigned)serialid[11], (unsigned)serialid[10], (unsigned)serialid[9],(unsigned)serialid[8]);
buf[39] = 0;
return true;
}
bool Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len)
{
len = MIN(12, len);
memcpy(buf, (const void *)UDID_START, len);
return true;
}
// return true if the reason for the reboot was a watchdog reset
bool Util::was_watchdog_reset() const
{
return stm32_was_watchdog_reset();
}
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
/*
display stack usage as text buffer for @SYS/threads.txt
*/
void Util::thread_info(ExpandingString &str)
{
#if HAL_ENABLE_THREAD_STATISTICS
uint64_t cumulative_cycles = ch.kernel_stats.m_crit_isr.cumulative;
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) {
if (tp->stats.best > 0) { // not run
cumulative_cycles += (uint64_t)tp->stats.cumulative;
}
}
#endif
// a header to allow for machine parsers to determine format
const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__);
#if HAL_ENABLE_THREAD_STATISTICS
str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u LOAD=%4.1f%%\n",
&__main_stack_base__,
unsigned(stack_free(&__main_stack_base__)),
unsigned(isr_stack_size), 100.0f * float(ch.kernel_stats.m_crit_isr.cumulative) / float(cumulative_cycles));
ch.kernel_stats.m_crit_isr.cumulative = 0U;
#else
str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u\n",
&__main_stack_base__,
unsigned(stack_free(&__main_stack_base__)),
unsigned(isr_stack_size));
#endif
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) {
uint32_t total_stack;
if (tp->wabase == (void*)&__main_thread_stack_base__) {
// main thread has its stack separated from the thread context
total_stack = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__);
} else {
// all other threads have their thread context pointer
// above the stack top
total_stack = uint32_t(tp) - uint32_t(tp->wabase);
}
#if HAL_ENABLE_THREAD_STATISTICS
time_measurement_t stats = tp->stats;
if (tp->stats.best > 0) { // not run
str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u LOAD=%4.1f%%%s\n",
tp->name, unsigned(tp->realprio), tp->wabase,
unsigned(stack_free(tp->wabase)), unsigned(total_stack),
100.0f * float(stats.cumulative) / float(cumulative_cycles),
// more than a loop slice is bad for everyone else, warn on
// more than a 200Hz slice so that only the worst offenders are identified
// also don't do this for the main or idle threads
tp != chThdGetSelfX() && unsigned(RTC2US(STM32_HSECLK, stats.worst)) > 5000
&& tp != get_main_thread() && tp->realprio != 1 ? "*" : "");
} else {
str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u\n",
tp->name, unsigned(tp->realprio), tp->wabase, unsigned(stack_free(tp->wabase)), unsigned(total_stack));
}
// Giovanni thinks this is dangerous, but we can't get useable data without it
if (tp != chThdGetSelfX()) {
chTMObjectInit(&tp->stats); // reset counters to zero
} else {
tp->stats.cumulative = 0U;
}
#else
str.printf("%-13.13s PRI=%3u sp=%p STACK=%u/%u\n",
tp->name, unsigned(tp->realprio), tp->wabase,
unsigned(stack_free(tp->wabase)), unsigned(total_stack));
#endif
}
}
#endif // CH_DBG_ENABLE_STACK_CHECK == TRUE
#if CH_CFG_USE_SEMAPHORES
// request information on dma contention
void Util::dma_info(ExpandingString &str)
{
#ifndef HAL_NO_SHARED_DMA
ChibiOS::Shared_DMA::dma_info(str);
#endif
}
#endif
#if CH_CFG_USE_HEAP == TRUE
/*
return information on heap usage
*/
void Util::mem_info(ExpandingString &str)
{
memory_heap_t *heaps;
const struct memory_region *regions;
uint8_t num_heaps = malloc_get_heaps(&heaps, &regions);
str.printf("MemInfoV1\n");
for (uint8_t i=0; i<num_heaps; i++) {
size_t totalp=0, largest=0;
// get memory available on main heap
chHeapStatus(i == 0 ? nullptr : &heaps[i], &totalp, &largest);
str.printf("START=0x%08x LEN=%3uk FREE=%6u LRG=%6u TYPE=%1u\n",
unsigned(regions[i].address), unsigned(regions[i].size/1024),
unsigned(totalp), unsigned(largest), unsigned(regions[i].flags));
}
}
#endif
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
static const char *persistent_header = "{{PERSISTENT_START_V1}}\n";
/*
create a set of persistent parameters in string form
*/
bool Util::get_persistent_params(ExpandingString &str) const
{
str.printf("%s", persistent_header);
#if HAL_INS_TEMPERATURE_CAL_ENABLE
const auto *ins = AP_InertialSensor::get_singleton();
if (ins) {
ins->get_persistent_params(str);
}
#endif
if (str.has_failed_allocation() || str.get_length() <= strlen(persistent_header)) {
// no data
return false;
}
// ensure that the length is a multiple of 32 to meet flash alignment requirements
while (!str.has_failed_allocation() && str.get_length() % 32 != 0) {
str.append(" ", 1);
}
return !str.has_failed_allocation();
}
/*
load a set of persistent parameters in string form from the bootloader sector
*/
bool Util::load_persistent_params(ExpandingString &str) const
{
const uint32_t addr = hal.flash->getpageaddr(0);
const uint32_t size = hal.flash->getpagesize(0);
const char *s = (const char *)memmem((void*)addr, size,
persistent_header,
strlen(persistent_header));
if (s) {
str.append(s, (addr+size) - uint32_t(s));
return !str.has_failed_allocation();
}
return false;
}
/*
apply persistent parameters from the bootloader sector to AP_Param
*/
void Util::apply_persistent_params(void) const
{
ExpandingString str {};
if (!load_persistent_params(str)) {
return;
}
char *s = str.get_writeable_string();
char *saveptr;
s += strlen(persistent_header);
uint32_t count = 0;
uint32_t errors = 0;
for (char *p = strtok_r(s, "\n", &saveptr);
p; p = strtok_r(nullptr, "\n", &saveptr)) {
char *eq = strchr(p, int('='));
if (eq) {
*eq = 0;
const char *pname = p;
const float value = atof(eq+1);
if (AP_Param::set_default_by_name(pname, value)) {
count++;
/*
we now have a special case for INS_ACC*_ID. To
support factory accelerometer calibration we need to
do a save() on the ID parameters if they are not
already in storage. This is needed as
AP_InertialSensor determines if a calibration has
been done by whether the IDs are configured in
storage
*/
if (strncmp(pname, "INS_ACC", 7) == 0 &&
strcmp(pname+strlen(pname)-3, "_ID") == 0) {
enum ap_var_type ptype;
AP_Int32 *ap = (AP_Int32 *)AP_Param::find(pname, &ptype);
if (ap && ptype == AP_PARAM_INT32) {
if (ap->get() != int32_t(value)) {
// the accelerometer ID has changed since
// this persistent data was saved. Stop
// loading persistent parameters as it is
// no longer valid for this board. This
// can happen if the user has set
// parameters to prevent loading of
// specific IMU drivers, or if they have
// setup an external IMU
errors++;
break;
}
if (!ap->configured_in_storage()) {
ap->save();
}
}
}
}
}
}
if (count) {
AP_Param::invalidate_count();
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loaded %u persistent parameters (%u errors)",
unsigned(count), unsigned(errors));
}
}
#endif // HAL_ENABLE_SAVE_PERSISTENT_PARAMS
// request information on uart I/O
void Util::uart_info(ExpandingString &str)
{
#if !defined(HAL_NO_UARTDRIVER)
ChibiOS::UARTDriver::uart_info(str);
#endif
}