ardupilot/libraries/AP_Baro/AP_Baro_SITL.cpp
Peter Barker 527e621a57 AP_Baro: accumulate altitude drift in place of raw calc
currently we set drift based on current boot time.  If you want to introduce it at some stage in a flight the baro alt will suddenly jump based on how long you've been up.

Instead, accumulate a delta
2024-04-30 16:39:32 +10:00

196 lines
6.0 KiB
C++

#include "AP_Baro_SITL.h"
#if AP_SIM_BARO_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
extern const AP_HAL::HAL& hal;
/*
constructor - registers instance at top Baro driver
*/
AP_Baro_SITL::AP_Baro_SITL(AP_Baro &baro) :
_sitl(AP::sitl()),
_has_sample(false),
AP_Baro_Backend(baro)
{
if (_sitl != nullptr) {
_instance = _frontend.register_sensor();
#if APM_BUILD_TYPE(APM_BUILD_ArduSub)
_frontend.set_type(_instance, AP_Baro::BARO_TYPE_WATER);
#endif
set_bus_id(_instance, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, 0, _instance, DEVTYPE_BARO_SITL));
hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Baro_SITL::_timer, void));
}
}
// adjust for board temperature warmup on start-up
void AP_Baro_SITL::temperature_adjustment(float &p, float &T)
{
const float tsec = AP_HAL::millis() * 0.001f;
const float T_sensor = T + AP::sitl()->temp_board_offset;
const float tconst = AP::sitl()->temp_tconst;
if (tsec < 23 * tconst) { // time which past the equation below equals T_sensor within approx. 1E-9
const float T0 = AP::sitl()->temp_start;
T = T_sensor - (T_sensor - T0) * expf(-tsec / tconst);
}
else {
T = T_sensor;
}
const float baro_factor = AP::sitl()->temp_baro_factor;
const float Tzero = 30.0f; // start baro adjustment at 30C
if (is_positive(baro_factor)) {
// this produces a pressure change with temperature that
// closely matches what has been observed with a ICM-20789
// barometer. A typical factor is 1.2.
p -= powf(MAX(T - Tzero, 0), baro_factor);
}
}
void AP_Baro_SITL::_timer()
{
// 100Hz
const uint32_t now = AP_HAL::millis();
if ((now - _last_sample_time) < 10) {
return;
}
_last_sample_time = now;
float sim_alt = _sitl->state.altitude;
if (_sitl->baro[_instance].disable) {
// barometer is disabled
return;
}
const auto drift_delta_t_ms = now - last_drift_delta_t_ms;
last_drift_delta_t_ms = now;
total_alt_drift += _sitl->baro[_instance].drift * drift_delta_t_ms * 0.001f;
sim_alt += total_alt_drift;
sim_alt += _sitl->baro[_instance].noise * rand_float();
// add baro glitch
sim_alt += _sitl->baro[_instance].glitch;
// add delay
uint32_t best_time_delta = 200; // initialise large time representing buffer entry closest to current time - delay.
uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay.
// storing data from sensor to buffer
if (now - _last_store_time >= 10) { // store data every 10 ms.
_last_store_time = now;
if (_store_index > _buffer_length - 1) { // reset buffer index if index greater than size of buffer
_store_index = 0;
}
// if freezed barometer, report altitude to last recorded altitude
if (_sitl->baro[_instance].freeze == 1) {
sim_alt = _last_altitude;
} else {
_last_altitude = sim_alt;
}
_buffer[_store_index].data = sim_alt; // add data to current index
_buffer[_store_index].time = _last_store_time; // add time_stamp to current index
_store_index = _store_index + 1; // increment index
}
// return delayed measurement
const uint32_t delayed_time = now - _sitl->baro[_instance].delay; // get time corresponding to delay
// find data corresponding to delayed time in buffer
for (uint8_t i = 0; i <= _buffer_length - 1; i++) {
// find difference between delayed time and time stamp in buffer
uint32_t time_delta = abs(
(int32_t)(delayed_time - _buffer[i].time));
// if this difference is smaller than last delta, store this time
if (time_delta < best_time_delta) {
best_index = i;
best_time_delta = time_delta;
}
}
if (best_time_delta < 200) { // only output stored state if < 200 msec retrieval error
sim_alt = _buffer[best_index].data;
}
#if !APM_BUILD_TYPE(APM_BUILD_ArduSub)
float sigma, delta, theta;
AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta);
float p = SSL_AIR_PRESSURE * delta;
float T = KELVIN_TO_C(SSL_AIR_TEMPERATURE * theta);
temperature_adjustment(p, T);
#else
float rho, delta, theta;
AP_Baro::SimpleUnderWaterAtmosphere(-sim_alt * 0.001f, rho, delta, theta);
float p = SSL_AIR_PRESSURE * delta;
float T = KELVIN_TO_C(SSL_AIR_TEMPERATURE * theta);
#endif
// add in correction for wind effects
p += wind_pressure_correction(_instance);
_recent_press = p;
_recent_temp = T;
_has_sample = true;
}
// unhealthy if baro is turned off or beyond supported instances
bool AP_Baro_SITL::healthy(uint8_t instance)
{
return !_sitl->baro[instance].disable;
}
// Read the sensor
void AP_Baro_SITL::update(void)
{
if (!_has_sample) {
return;
}
WITH_SEMAPHORE(_sem);
_copy_to_frontend(_instance, _recent_press, _recent_temp);
_has_sample = false;
}
/*
return pressure correction for wind based on SIM_BARO_WCF parameters
*/
float AP_Baro_SITL::wind_pressure_correction(uint8_t instance)
{
const auto &bp = AP::sitl()->baro[instance];
// correct for static pressure position errors
const Vector3f &airspeed_vec_bf = AP::sitl()->state.velocity_air_bf;
float error = 0.0;
const float sqx = sq(airspeed_vec_bf.x);
const float sqy = sq(airspeed_vec_bf.y);
const float sqz = sq(airspeed_vec_bf.z);
if (is_positive(airspeed_vec_bf.x)) {
error += bp.wcof_xp * sqx;
} else {
error += bp.wcof_xn * sqx;
}
if (is_positive(airspeed_vec_bf.y)) {
error += bp.wcof_yp * sqy;
} else {
error += bp.wcof_yn * sqy;
}
if (is_positive(airspeed_vec_bf.z)) {
error += bp.wcof_zp * sqz;
} else {
error += bp.wcof_zn * sqz;
}
return error * 0.5 * SSL_AIR_DENSITY * AP::baro().get_air_density_ratio();
}
#endif // AP_SIM_BARO_ENABLED