ardupilot/libraries/AP_InertialSensor/examples/MPU6000/MPU6000.pde
rmackay9 e835cef181 AP_InertialSensor: merge in calibration features from IMU library
add gauss-newton method of accelerometer calibration
2012-11-07 19:20:27 +09:00

200 lines
4.9 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
//
// Simple test for the AP_InertialSensor MPU6000 driver.
//
#include <FastSerial.h>
#include <SPI.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <AP_PeriodicProcess.h>
#include <AP_ADC.h>
#include <AP_InertialSensor.h>
#include <AP_Math.h>
#include <AP_Common.h>
#define APM_HARDWARE_APM1 1
#define APM_HARDWARE_APM2 2
#define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
//#define CONFIG_APM_HARDWARE APM_HARDWARE_APM1
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
#define SAMPLE_UNIT 1
#else
#define SAMPLE_UNIT 5 // we need 5x as many samples on the oilpan
#endif
FastSerialPort(Serial, 0);
Arduino_Mega_ISR_Registry isr_registry;
AP_TimerProcess scheduler;
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_InertialSensor_MPU6000 ins;
#else
AP_ADC_ADS7844 adc;
AP_InertialSensor_Oilpan ins(&adc);
#endif
void setup(void)
{
Serial.begin(115200);
Serial.println("Doing INS startup...");
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate
isr_registry.init();
scheduler.init(&isr_registry);
// we need to stop the barometer from holding the SPI bus
pinMode(40, OUTPUT);
digitalWrite(40, HIGH);
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM1
adc.Init(&scheduler); // APM ADC library initialization
#endif
ins.init(AP_InertialSensor::COLD_START, delay, NULL, &scheduler);
// display initial values
display_offsets_and_scaling();
}
void loop(void)
{
int16_t user_input;
Serial.println();
Serial.println("Menu: ");
Serial.println(" c) calibrate accelerometers");
Serial.println(" d) display offsets and scaling");
Serial.println(" l) level (capture offsets from level)");
Serial.println(" t) test");
// wait for user input
while( !Serial.available() ) {
delay(20);
}
// read in user input
while( Serial.available() ) {
user_input = Serial.read();
if( user_input == 'c' || user_input == 'C' ) {
run_calibration();
display_offsets_and_scaling();
}
if( user_input == 'd' || user_input == 'D' ) {
display_offsets_and_scaling();
}
if( user_input == 'l' || user_input == 'L' ) {
run_level();
display_offsets_and_scaling();
}
if( user_input == 't' || user_input == 'T' ) {
run_test();
}
}
}
void run_calibration()
{
// clear off any other characters (like line feeds,etc)
while( Serial.available() ) {
Serial.read();
}
ins.calibrate_accel(delay, NULL);
}
void display_offsets_and_scaling()
{
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f accel_scale = ins.get_accel_scale();
Vector3f gyro_offsets = ins.get_gyro_offsets();
// display results
Serial.printf_P(PSTR("\nAccel Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
Serial.printf_P(PSTR("Accel Scale X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
accel_scale.x,
accel_scale.y,
accel_scale.z);
Serial.printf_P(PSTR("Gyro Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z);
}
void run_level()
{
// clear off any input in the buffer
while( Serial.available() ) {
Serial.read();
}
// display message to user
Serial.print("Place APM on a level surface and press any key..\n");
// wait for user input
while( !Serial.available() ) {
delay(20);
}
while( Serial.available() ) {
Serial.read();
}
// run accel level
ins.init_accel(delay, NULL);
// display results
display_offsets_and_scaling();
}
void run_test()
{
Vector3f accel;
Vector3f gyro;
float temperature;
float length;
// flush any user input
while( Serial.available() ) {
Serial.read();
}
// clear out any existing samples from ins
ins.update();
// loop as long as user does not press a key
while( !Serial.available() ) {
// wait until we have 8 samples
while( ins.num_samples_available() < 8 * SAMPLE_UNIT ) {
delay(1);
}
// read samples from ins
ins.update();
accel = ins.get_accel();
gyro = ins.get_gyro();
temperature = ins.temperature();
length = sqrt(accel.x*accel.x + accel.y*accel.y + accel.z*accel.z);
// display results
Serial.printf_P(PSTR("Accel X:%4.2f \t Y:%4.2f \t Z:%4.2f \t len:%4.2f \t Gyro X:%4.2f \t Y:%4.2f \t Z:%4.2f \t Temp:%4.2f\n"),
accel.x, accel.y, accel.z, length, gyro.x, gyro.y, gyro.z, temperature);
}
// clear user input
while( Serial.available() ) {
Serial.read();
}
}