mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 10:58:30 -04:00
501 lines
16 KiB
C++
501 lines
16 KiB
C++
#include "Sub.h"
|
|
|
|
/*
|
|
* failsafe.cpp
|
|
* Failsafe checks and actions
|
|
*/
|
|
|
|
static bool failsafe_enabled = false;
|
|
static uint16_t failsafe_last_ticks;
|
|
static uint32_t failsafe_last_timestamp;
|
|
static bool in_failsafe;
|
|
|
|
// Enable mainloop lockup failsafe
|
|
void Sub::mainloop_failsafe_enable()
|
|
{
|
|
failsafe_enabled = true;
|
|
failsafe_last_timestamp = AP_HAL::micros();
|
|
}
|
|
|
|
// Disable mainloop lockup failsafe
|
|
// Used when we know we are going to delay the mainloop significantly.
|
|
void Sub::mainloop_failsafe_disable()
|
|
{
|
|
failsafe_enabled = false;
|
|
}
|
|
|
|
// This function is called from the core timer interrupt at 1kHz.
|
|
// This checks that the mainloop is running, and has not locked up.
|
|
void Sub::mainloop_failsafe_check()
|
|
{
|
|
uint32_t tnow = AP_HAL::micros();
|
|
|
|
const uint16_t ticks = scheduler.ticks();
|
|
if (ticks != failsafe_last_ticks) {
|
|
// the main loop is running, all is OK
|
|
failsafe_last_ticks = ticks;
|
|
failsafe_last_timestamp = tnow;
|
|
if (in_failsafe) {
|
|
in_failsafe = false;
|
|
AP::logger().Write_Error(LogErrorSubsystem::CPU,LogErrorCode::FAILSAFE_RESOLVED);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!in_failsafe && failsafe_enabled && tnow - failsafe_last_timestamp > 2000000) {
|
|
// motors are running but we have gone 2 second since the
|
|
// main loop ran. That means we're in trouble and should
|
|
// disarm the motors.
|
|
in_failsafe = true;
|
|
// reduce motors to minimum (we do not immediately disarm because we want to log the failure)
|
|
if (motors.armed()) {
|
|
motors.output_min();
|
|
}
|
|
AP::logger().Write_Error(LogErrorSubsystem::CPU,LogErrorCode::FAILSAFE_OCCURRED);
|
|
}
|
|
|
|
if (failsafe_enabled && in_failsafe && tnow - failsafe_last_timestamp > 1000000) {
|
|
// disarm motors every second
|
|
failsafe_last_timestamp = tnow;
|
|
if (motors.armed()) {
|
|
motors.armed(false);
|
|
motors.output();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sub::failsafe_sensors_check()
|
|
{
|
|
if (!ap.depth_sensor_present) {
|
|
return;
|
|
}
|
|
|
|
// We need a depth sensor to do any sort of auto z control
|
|
if (sensor_health.depth) {
|
|
if (failsafe.sensor_health) {
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_SENSORS, LogErrorCode::ERROR_RESOLVED);
|
|
failsafe.sensor_health = false;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// only report once
|
|
if (failsafe.sensor_health) {
|
|
return;
|
|
}
|
|
|
|
failsafe.sensor_health = true;
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "Depth sensor error!");
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_SENSORS, LogErrorCode::BAD_DEPTH);
|
|
|
|
if (control_mode == ALT_HOLD || control_mode == SURFACE || mode_requires_GPS(control_mode)) {
|
|
// This should always succeed
|
|
if (!set_mode(MANUAL, ModeReason::BAD_DEPTH)) {
|
|
// We should never get here
|
|
arming.disarm(AP_Arming::Method::BADFLOWOFCONTROL);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sub::failsafe_ekf_check()
|
|
{
|
|
static uint32_t last_ekf_good_ms = 0;
|
|
|
|
if (g.fs_ekf_action == FS_EKF_ACTION_DISABLED) {
|
|
last_ekf_good_ms = AP_HAL::millis();
|
|
failsafe.ekf = false;
|
|
AP_Notify::flags.ekf_bad = false;
|
|
return;
|
|
}
|
|
|
|
float posVar, hgtVar, tasVar;
|
|
Vector3f magVar;
|
|
float compass_variance;
|
|
float vel_variance;
|
|
ahrs.get_variances(vel_variance, posVar, hgtVar, magVar, tasVar);
|
|
compass_variance = magVar.length();
|
|
|
|
if (compass_variance < g.fs_ekf_thresh && vel_variance < g.fs_ekf_thresh) {
|
|
last_ekf_good_ms = AP_HAL::millis();
|
|
failsafe.ekf = false;
|
|
AP_Notify::flags.ekf_bad = false;
|
|
return;
|
|
}
|
|
|
|
// Bad EKF for 2 solid seconds triggers failsafe
|
|
if (AP_HAL::millis() < last_ekf_good_ms + 2000) {
|
|
failsafe.ekf = false;
|
|
AP_Notify::flags.ekf_bad = false;
|
|
return;
|
|
}
|
|
|
|
// Only trigger failsafe once
|
|
if (failsafe.ekf) {
|
|
return;
|
|
}
|
|
|
|
failsafe.ekf = true;
|
|
AP_Notify::flags.ekf_bad = true;
|
|
|
|
AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_BAD_VARIANCE);
|
|
|
|
if (AP_HAL::millis() > failsafe.last_ekf_warn_ms + 20000) {
|
|
failsafe.last_ekf_warn_ms = AP_HAL::millis();
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "EKF bad");
|
|
}
|
|
|
|
if (g.fs_ekf_action == FS_EKF_ACTION_DISARM) {
|
|
arming.disarm(AP_Arming::Method::EKFFAILSAFE);
|
|
}
|
|
}
|
|
|
|
// Battery failsafe handler
|
|
void Sub::handle_battery_failsafe(const char* type_str, const int8_t action)
|
|
{
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_BATT, LogErrorCode::FAILSAFE_OCCURRED);
|
|
|
|
switch((Failsafe_Action)action) {
|
|
case Failsafe_Action_Surface:
|
|
set_mode(SURFACE, ModeReason::BATTERY_FAILSAFE);
|
|
break;
|
|
case Failsafe_Action_Disarm:
|
|
arming.disarm(AP_Arming::Method::BATTERYFAILSAFE);
|
|
break;
|
|
case Failsafe_Action_Warn:
|
|
case Failsafe_Action_None:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Make sure that we are receiving pilot input at an appropriate interval
|
|
void Sub::failsafe_pilot_input_check()
|
|
{
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
|
|
if (g.failsafe_pilot_input == FS_PILOT_INPUT_DISABLED) {
|
|
failsafe.pilot_input = false;
|
|
return;
|
|
}
|
|
|
|
if (AP_HAL::millis() < failsafe.last_pilot_input_ms + g.failsafe_pilot_input_timeout * 1000.0f) {
|
|
failsafe.pilot_input = false; // We've received an update from the pilot within the timeout period
|
|
return;
|
|
}
|
|
|
|
if (failsafe.pilot_input) {
|
|
return; // only act once
|
|
}
|
|
|
|
failsafe.pilot_input = true;
|
|
|
|
AP::logger().Write_Error(LogErrorSubsystem::PILOT_INPUT, LogErrorCode::FAILSAFE_OCCURRED);
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "Lost manual control");
|
|
|
|
set_neutral_controls();
|
|
|
|
if(g.failsafe_pilot_input == FS_PILOT_INPUT_DISARM) {
|
|
arming.disarm(AP_Arming::Method::PILOT_INPUT_FAILSAFE);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Internal pressure failsafe check
|
|
// Check if the internal pressure of the watertight electronics enclosure
|
|
// has exceeded the maximum specified by the FS_PRESS_MAX parameter
|
|
void Sub::failsafe_internal_pressure_check()
|
|
{
|
|
|
|
if (g.failsafe_pressure == FS_PRESS_DISABLED) {
|
|
return; // Nothing to do
|
|
}
|
|
|
|
uint32_t tnow = AP_HAL::millis();
|
|
static uint32_t last_pressure_warn_ms;
|
|
static uint32_t last_pressure_good_ms;
|
|
if (barometer.get_pressure(0) < g.failsafe_pressure_max) {
|
|
last_pressure_good_ms = tnow;
|
|
last_pressure_warn_ms = tnow;
|
|
failsafe.internal_pressure = false;
|
|
return;
|
|
}
|
|
|
|
// 2 seconds with no readings below threshold triggers failsafe
|
|
if (tnow > last_pressure_good_ms + 2000) {
|
|
failsafe.internal_pressure = true;
|
|
}
|
|
|
|
// Warn every 30 seconds
|
|
if (failsafe.internal_pressure && tnow > last_pressure_warn_ms + 30000) {
|
|
last_pressure_warn_ms = tnow;
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Internal pressure critical!");
|
|
}
|
|
}
|
|
|
|
// Internal temperature failsafe check
|
|
// Check if the internal temperature of the watertight electronics enclosure
|
|
// has exceeded the maximum specified by the FS_TEMP_MAX parameter
|
|
void Sub::failsafe_internal_temperature_check()
|
|
{
|
|
|
|
if (g.failsafe_temperature == FS_TEMP_DISABLED) {
|
|
return; // Nothing to do
|
|
}
|
|
|
|
uint32_t tnow = AP_HAL::millis();
|
|
static uint32_t last_temperature_warn_ms;
|
|
static uint32_t last_temperature_good_ms;
|
|
if (barometer.get_temperature(0) < g.failsafe_temperature_max) {
|
|
last_temperature_good_ms = tnow;
|
|
last_temperature_warn_ms = tnow;
|
|
failsafe.internal_temperature = false;
|
|
return;
|
|
}
|
|
|
|
// 2 seconds with no readings below threshold triggers failsafe
|
|
if (tnow > last_temperature_good_ms + 2000) {
|
|
failsafe.internal_temperature = true;
|
|
}
|
|
|
|
// Warn every 30 seconds
|
|
if (failsafe.internal_temperature && tnow > last_temperature_warn_ms + 30000) {
|
|
last_temperature_warn_ms = tnow;
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Internal temperature critical!");
|
|
}
|
|
}
|
|
|
|
// Check if we are leaking and perform appropriate action
|
|
void Sub::failsafe_leak_check()
|
|
{
|
|
bool status = leak_detector.get_status();
|
|
|
|
// Do nothing if we are dry, or if leak failsafe action is disabled
|
|
if (status == false || g.failsafe_leak == FS_LEAK_DISABLED) {
|
|
if (failsafe.leak) {
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_LEAK, LogErrorCode::FAILSAFE_RESOLVED);
|
|
}
|
|
AP_Notify::flags.leak_detected = false;
|
|
failsafe.leak = false;
|
|
return;
|
|
}
|
|
|
|
AP_Notify::flags.leak_detected = status;
|
|
|
|
uint32_t tnow = AP_HAL::millis();
|
|
|
|
// We have a leak
|
|
// Always send a warning every 20 seconds
|
|
if (tnow > failsafe.last_leak_warn_ms + 20000) {
|
|
failsafe.last_leak_warn_ms = tnow;
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "Leak Detected");
|
|
}
|
|
|
|
// Do nothing if we have already triggered the failsafe action, or if the motors are disarmed
|
|
if (failsafe.leak) {
|
|
return;
|
|
}
|
|
|
|
failsafe.leak = true;
|
|
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_LEAK, LogErrorCode::FAILSAFE_OCCURRED);
|
|
|
|
// Handle failsafe action
|
|
if (failsafe.leak && g.failsafe_leak == FS_LEAK_SURFACE && motors.armed()) {
|
|
set_mode(SURFACE, ModeReason::LEAK_FAILSAFE);
|
|
}
|
|
}
|
|
|
|
// failsafe_gcs_check - check for ground station failsafe
|
|
void Sub::failsafe_gcs_check()
|
|
{
|
|
// return immediately if we have never had contact with a gcs, or if gcs failsafe action is disabled
|
|
// this also checks to see if we have a GCS failsafe active, if we do, then must continue to process the logic for recovery from this state.
|
|
if (!g.failsafe_gcs && g.failsafe_gcs == FS_GCS_DISABLED) {
|
|
return;
|
|
}
|
|
|
|
const uint32_t gcs_last_seen_ms = gcs().sysid_myggcs_last_seen_time_ms();
|
|
if (gcs_last_seen_ms == 0) {
|
|
// we've never seen a GCS, so we don't failsafe if we stop seeing it
|
|
return;
|
|
}
|
|
|
|
uint32_t tnow = AP_HAL::millis();
|
|
|
|
// Check if we have gotten a GCS heartbeat recently (GCS sysid must match SYSID_MYGCS parameter)
|
|
if (tnow - gcs_last_seen_ms < FS_GCS_TIMEOUT_MS) {
|
|
// Log event if we are recovering from previous gcs failsafe
|
|
if (failsafe.gcs) {
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_GCS, LogErrorCode::FAILSAFE_RESOLVED);
|
|
}
|
|
failsafe.gcs = false;
|
|
return;
|
|
}
|
|
|
|
//////////////////////////////
|
|
// GCS heartbeat has timed out
|
|
//////////////////////////////
|
|
|
|
// Send a warning every 30 seconds
|
|
if (tnow - failsafe.last_gcs_warn_ms > 30000) {
|
|
failsafe.last_gcs_warn_ms = tnow;
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "MYGCS: %u, heartbeat lost", g.sysid_my_gcs.get());
|
|
}
|
|
|
|
// do nothing if we have already triggered the failsafe action, or if the motors are disarmed
|
|
if (failsafe.gcs || !motors.armed()) {
|
|
return;
|
|
}
|
|
|
|
failsafe.gcs = true;
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_GCS, LogErrorCode::FAILSAFE_OCCURRED);
|
|
|
|
// handle failsafe action
|
|
if (g.failsafe_gcs == FS_GCS_DISARM) {
|
|
arming.disarm(AP_Arming::Method::GCSFAILSAFE);
|
|
} else if (g.failsafe_gcs == FS_GCS_HOLD && motors.armed()) {
|
|
if (!set_mode(ALT_HOLD, ModeReason::GCS_FAILSAFE)) {
|
|
arming.disarm(AP_Arming::Method::GCS_FAILSAFE_HOLDFAILED);
|
|
}
|
|
} else if (g.failsafe_gcs == FS_GCS_SURFACE && motors.armed()) {
|
|
if (!set_mode(SURFACE, ModeReason::GCS_FAILSAFE)) {
|
|
arming.disarm(AP_Arming::Method::GCS_FAILSAFE_SURFACEFAILED);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define CRASH_CHECK_TRIGGER_MS 2000 // 2 seconds inverted indicates a crash
|
|
#define CRASH_CHECK_ANGLE_DEVIATION_DEG 30.0f // 30 degrees beyond angle max is signal we are inverted
|
|
|
|
// Check for a crash
|
|
// The vehicle is considered crashed if the angle error exceeds a specified limit for more than 2 seconds
|
|
void Sub::failsafe_crash_check()
|
|
{
|
|
static uint32_t last_crash_check_pass_ms;
|
|
uint32_t tnow = AP_HAL::millis();
|
|
|
|
// return immediately if disarmed, or crash checking disabled
|
|
if (!motors.armed() || g.fs_crash_check == FS_CRASH_DISABLED) {
|
|
last_crash_check_pass_ms = tnow;
|
|
failsafe.crash = false;
|
|
return;
|
|
}
|
|
|
|
// return immediately if we are not in an angle stabilized flight mode
|
|
if (control_mode == ACRO || control_mode == MANUAL) {
|
|
last_crash_check_pass_ms = tnow;
|
|
failsafe.crash = false;
|
|
return;
|
|
}
|
|
|
|
// check for angle error over 30 degrees
|
|
const float angle_error = attitude_control.get_att_error_angle_deg();
|
|
if (angle_error <= CRASH_CHECK_ANGLE_DEVIATION_DEG) {
|
|
last_crash_check_pass_ms = tnow;
|
|
failsafe.crash = false;
|
|
return;
|
|
}
|
|
|
|
if (tnow < last_crash_check_pass_ms + CRASH_CHECK_TRIGGER_MS) {
|
|
return;
|
|
}
|
|
|
|
// Conditions met, we are in failsafe
|
|
|
|
// Send warning to GCS
|
|
if (tnow > failsafe.last_crash_warn_ms + 20000) {
|
|
failsafe.last_crash_warn_ms = tnow;
|
|
gcs().send_text(MAV_SEVERITY_WARNING,"Crash detected");
|
|
}
|
|
|
|
// Only perform failsafe action once
|
|
if (failsafe.crash) {
|
|
return;
|
|
}
|
|
|
|
failsafe.crash = true;
|
|
AP::logger().Write_Error(LogErrorSubsystem::CRASH_CHECK, LogErrorCode::CRASH_CHECK_CRASH);
|
|
|
|
// disarm motors
|
|
if (g.fs_crash_check == FS_CRASH_DISARM) {
|
|
arming.disarm(AP_Arming::Method::CRASH);
|
|
}
|
|
}
|
|
|
|
// executes terrain failsafe if data is missing for longer than a few seconds
|
|
// missing_data should be set to true if the vehicle failed to navigate because of missing data, false if navigation is proceeding successfully
|
|
void Sub::failsafe_terrain_check()
|
|
{
|
|
// trigger with 5 seconds of failures while in AUTO mode
|
|
bool valid_mode = (control_mode == AUTO || control_mode == GUIDED);
|
|
bool timeout = (failsafe.terrain_last_failure_ms - failsafe.terrain_first_failure_ms) > FS_TERRAIN_TIMEOUT_MS;
|
|
bool trigger_event = valid_mode && timeout;
|
|
|
|
// check for clearing of event
|
|
if (trigger_event != failsafe.terrain) {
|
|
if (trigger_event) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL,"Failsafe terrain triggered");
|
|
failsafe_terrain_on_event();
|
|
} else {
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_TERRAIN, LogErrorCode::ERROR_RESOLVED);
|
|
failsafe.terrain = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This gets called if mission items are in ALT_ABOVE_TERRAIN frame
|
|
// Terrain failure occurs when terrain data is not found, or rangefinder is not enabled or healthy
|
|
// set terrain data status (found or not found)
|
|
void Sub::failsafe_terrain_set_status(bool data_ok)
|
|
{
|
|
uint32_t now = AP_HAL::millis();
|
|
|
|
// record time of first and latest failures (i.e. duration of failures)
|
|
if (!data_ok) {
|
|
failsafe.terrain_last_failure_ms = now;
|
|
if (failsafe.terrain_first_failure_ms == 0) {
|
|
failsafe.terrain_first_failure_ms = now;
|
|
}
|
|
} else {
|
|
// failures cleared after 0.1 seconds of persistent successes
|
|
if (now - failsafe.terrain_last_failure_ms > 100) {
|
|
failsafe.terrain_last_failure_ms = 0;
|
|
failsafe.terrain_first_failure_ms = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// terrain failsafe action
|
|
void Sub::failsafe_terrain_on_event()
|
|
{
|
|
failsafe.terrain = true;
|
|
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_TERRAIN, LogErrorCode::FAILSAFE_OCCURRED);
|
|
|
|
// If rangefinder is enabled, we can recover from this failsafe
|
|
if (!rangefinder_state.enabled || !auto_terrain_recover_start()) {
|
|
failsafe_terrain_act();
|
|
}
|
|
|
|
|
|
}
|
|
|
|
// Recovery failed, take action
|
|
void Sub::failsafe_terrain_act()
|
|
{
|
|
switch (g.failsafe_terrain) {
|
|
case FS_TERRAIN_HOLD:
|
|
if (!set_mode(POSHOLD, ModeReason::TERRAIN_FAILSAFE)) {
|
|
set_mode(ALT_HOLD, ModeReason::TERRAIN_FAILSAFE);
|
|
}
|
|
AP_Notify::events.failsafe_mode_change = 1;
|
|
break;
|
|
|
|
case FS_TERRAIN_SURFACE:
|
|
set_mode(SURFACE, ModeReason::TERRAIN_FAILSAFE);
|
|
AP_Notify::events.failsafe_mode_change = 1;
|
|
break;
|
|
|
|
case FS_TERRAIN_DISARM:
|
|
default:
|
|
arming.disarm(AP_Arming::Method::TERRAINFAILSAFE);
|
|
}
|
|
}
|