ardupilot/libraries/AP_HAL_Linux/UARTDriver.cpp
2015-07-29 08:36:05 +10:00

675 lines
17 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: -*- nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "UARTDriver.h"
#include <stdio.h>
#include <errno.h>
#include <termios.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <poll.h>
#include <assert.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <string.h>
#include <arpa/inet.h>
#include "../AP_HAL/utility/RingBuffer.h"
#include "UARTDevice.h"
extern const AP_HAL::HAL& hal;
using namespace Linux;
LinuxUARTDriver::LinuxUARTDriver(bool default_console) :
device_path(NULL),
_rd_fd(-1),
_wr_fd(-1),
_packetise(false),
_flow_control(FLOW_CONTROL_DISABLE)
{
if (default_console) {
_rd_fd = 0;
_wr_fd = 1;
_console = true;
}
}
/*
set the tty device to use for this UART
*/
void LinuxUARTDriver::set_device_path(const char *path)
{
device_path = path;
}
/*
open the tty
*/
void LinuxUARTDriver::begin(uint32_t b)
{
begin(b, 0, 0);
}
void LinuxUARTDriver::begin(uint32_t b, uint16_t rxS, uint16_t txS)
{
if (device_path == NULL && _console) {
_rd_fd = STDIN_FILENO;
_wr_fd = STDOUT_FILENO;
fcntl(_rd_fd, F_SETFL, fcntl(_rd_fd, F_GETFL, 0) | O_NONBLOCK);
fcntl(_wr_fd, F_SETFL, fcntl(_wr_fd, F_GETFL, 0) | O_NONBLOCK);
} else if (!_initialised) {
if (device_path == NULL) {
return;
}
switch (_parseDevicePath(device_path)){
case DEVICE_TCP:
{
_connected = false;
if (_flag != NULL){
if (!strcmp(_flag, "wait")){
_tcp_start_connection(true);
} else {
_tcp_start_connection(false);
}
} else {
_tcp_start_connection(false);
}
if (!_connected) {
::printf("LinuxUARTDriver TCP connection not established\n");
exit(1);
}
_flow_control = FLOW_CONTROL_ENABLE;
break;
}
case DEVICE_UDP:
{
_udp_start_connection();
_flow_control = FLOW_CONTROL_ENABLE;
break;
}
case DEVICE_SERIAL:
{
if (!_serial_start_connection()) {
break; /* Whatever it might mean */
}
break;
}
default:
{
// Notify that the option is not valid and select standart input and output
::printf("LinuxUARTDriver parsing failed, using default\n");
_rd_fd = STDIN_FILENO;
_wr_fd = STDOUT_FILENO;
fcntl(_rd_fd, F_SETFL, fcntl(_rd_fd, F_GETFL, 0) | O_NONBLOCK);
fcntl(_wr_fd, F_SETFL, fcntl(_wr_fd, F_GETFL, 0) | O_NONBLOCK);
break;
}
}
}
_initialised = false;
while (_in_timer) hal.scheduler->delay(1);
_device->set_speed(b);
_allocate_buffers(rxS, txS);
}
void LinuxUARTDriver::_allocate_buffers(uint16_t rxS, uint16_t txS)
{
/* we have enough memory to have a larger transmit buffer for
* all ports. This means we don't get delays while waiting to
* write GPS config packets
*/
if (rxS < 8192) {
rxS = 8192;
}
if (txS < 8192) {
txS = 8192;
}
/*
allocate the read buffer
*/
if (rxS != 0 && rxS != _readbuf_size) {
_readbuf_size = rxS;
if (_readbuf != NULL) {
free(_readbuf);
}
_readbuf = (uint8_t *)malloc(_readbuf_size);
_readbuf_head = 0;
_readbuf_tail = 0;
}
/*
allocate the write buffer
*/
if (txS != 0 && txS != _writebuf_size) {
_writebuf_size = txS;
if (_writebuf != NULL) {
free(_writebuf);
}
_writebuf = (uint8_t *)malloc(_writebuf_size);
_writebuf_head = 0;
_writebuf_tail = 0;
}
if (_writebuf_size != 0 && _readbuf_size != 0) {
_initialised = true;
}
}
/*
Device path accepts the following syntaxes:
- /dev/ttyO1
- tcp:*:1243:wait
- udp:192.168.2.15:1243
*/
LinuxUARTDriver::device_type LinuxUARTDriver::_parseDevicePath(const char *arg)
{
struct stat st;
_flag = NULL; // init flag
char *devstr = strdup(arg);
if (devstr == NULL) {
return DEVICE_UNKNOWN;
}
if (stat(devstr, &st) == 0 && S_ISCHR(st.st_mode)) {
free(devstr);
return DEVICE_SERIAL;
} else if (strncmp(devstr, "tcp:", 4) == 0 ||
strncmp(devstr, "udp:", 4) == 0) {
char *saveptr = NULL;
// Parse the string
char *protocol, *ip, *port, *flag;
protocol = strtok_r(devstr, ":", &saveptr);
ip = strtok_r(NULL, ":", &saveptr);
port = strtok_r(NULL, ":", &saveptr);
flag = strtok_r(NULL, ":", &saveptr);
_base_port = (uint16_t) atoi(port);
if (_ip) free(_ip);
_ip = NULL;
if (ip) {
_ip = strdup(ip);
}
if (_flag) free(_flag);
_flag = NULL;
if (flag) {
_flag = strdup(flag);
}
if (strcmp(protocol, "udp") == 0) {
free(devstr);
return DEVICE_UDP;
}
free(devstr);
return DEVICE_TCP;
}
free(devstr);
return DEVICE_UNKNOWN;
}
bool LinuxUARTDriver::_serial_start_connection()
{
_device = new UARTDevice(device_path);
_device->open();
_device->set_blocking(false);
_flow_control = FLOW_CONTROL_DISABLE;
return true;
}
/*
start a TCP connection for the serial port. If wait_for_connection
is true then block until a client connects
*/
void LinuxUARTDriver::_tcp_start_connection(bool wait_for_connection)
{
int one=1;
struct sockaddr_in sockaddr;
int ret;
int listen_fd = -1; // socket we are listening on
int net_fd = -1; // network file descriptor, will be linked to wr_fd and rd_fd
uint8_t portNumber = 0; // connecto to _base_port + portNumber
if (net_fd != -1) {
close(net_fd);
}
if (listen_fd == -1) {
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(_base_port + portNumber);
sockaddr.sin_family = AF_INET;
if (strcmp(_ip, "*") == 0) {
// Bind to all interfaces
sockaddr.sin_addr.s_addr = htonl(INADDR_ANY);
} else {
sockaddr.sin_addr.s_addr = inet_addr(_ip);
}
listen_fd = socket(AF_INET, SOCK_STREAM, 0);
if (listen_fd == -1) {
::printf("socket failed - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
if (!wait_for_connection) {
ret = connect(listen_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret < 0) {
::printf("connect failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
fcntl(listen_fd, F_SETFL, fcntl(listen_fd, F_GETFL, 0) | O_NONBLOCK);
_rd_fd = listen_fd;
_connected = true;
::printf("Serial port %u on TCP port %u\n", portNumber,
_base_port + portNumber);
fflush(stdout);
} else {
ret = bind(listen_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
::printf("bind failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
ret = listen(listen_fd, 5);
if (ret == -1) {
::printf("listen failed - %s\n", strerror(errno));
exit(1);
}
::printf("Serial port %u on TCP port %u\n", portNumber,
_base_port + portNumber);
::fflush(stdout);
::printf("Waiting for connection ....\n");
::fflush(stdout);
net_fd = accept(listen_fd, NULL, NULL);
if (net_fd == -1) {
::printf("accept() error - %s", strerror(errno));
exit(1);
}
setsockopt(net_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
setsockopt(net_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one));
// always run the file descriptor non-blocking, and deal with |
// blocking IO in the higher level calls
fcntl(net_fd, F_SETFL, fcntl(net_fd, F_GETFL, 0) | O_NONBLOCK);
_connected = true;
_rd_fd = net_fd;
_wr_fd = net_fd;
}
}
}
/*
start a UDP connection for the serial port
*/
void LinuxUARTDriver::_udp_start_connection(void)
{
struct sockaddr_in sockaddr;
int ret;
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(_base_port);
sockaddr.sin_family = AF_INET;
sockaddr.sin_addr.s_addr = inet_addr(_ip);
_rd_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (_rd_fd == -1) {
::printf("socket failed - %s\n", strerror(errno));
exit(1);
}
ret = connect(_rd_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
::printf("connect failed to %s:%u - %s\n",
_ip, (unsigned)_base_port,
strerror(errno));
exit(1);
}
// always run the file descriptor non-blocking, and deal with |
// blocking IO in the higher level calls
fcntl(_rd_fd, F_SETFL, fcntl(_rd_fd, F_GETFL, 0) | O_NONBLOCK);
_wr_fd = _rd_fd;
// try to write on MAVLink packet boundaries if possible
_packetise = true;
}
/*
shutdown a UART
*/
void LinuxUARTDriver::end()
{
_initialised = false;
_connected = false;
while (_in_timer) hal.scheduler->delay(1);
if (_rd_fd == _wr_fd && _rd_fd != -1) {
_device->close();
}
_rd_fd = -1;
_wr_fd = -1;
if (_readbuf) {
free(_readbuf);
_readbuf = NULL;
}
if (_writebuf) {
free(_writebuf);
_writebuf = NULL;
}
_readbuf_size = _writebuf_size = 0;
_writebuf_head = 0;
_writebuf_tail = 0;
_readbuf_head = 0;
_readbuf_tail = 0;
}
void LinuxUARTDriver::flush()
{
// we are not doing any buffering, so flush is a no-op
}
/*
return true if the UART is initialised
*/
bool LinuxUARTDriver::is_initialized()
{
return _initialised;
}
/*
enable or disable blocking writes
*/
void LinuxUARTDriver::set_blocking_writes(bool blocking)
{
_nonblocking_writes = !blocking;
}
/*
do we have any bytes pending transmission?
*/
bool LinuxUARTDriver::tx_pending()
{
return !BUF_EMPTY(_writebuf);
}
/*
return the number of bytes available to be read
*/
int16_t LinuxUARTDriver::available()
{
if (!_initialised) {
return 0;
}
uint16_t _tail;
return BUF_AVAILABLE(_readbuf);
}
/*
how many bytes are available in the output buffer?
*/
int16_t LinuxUARTDriver::txspace()
{
if (!_initialised) {
return 0;
}
uint16_t _head;
return BUF_SPACE(_writebuf);
}
int16_t LinuxUARTDriver::read()
{
uint8_t c;
if (!_initialised || _readbuf == NULL) {
return -1;
}
if (BUF_EMPTY(_readbuf)) {
return -1;
}
c = _readbuf[_readbuf_head];
BUF_ADVANCEHEAD(_readbuf, 1);
return c;
}
/* Linux implementations of Print virtual methods */
size_t LinuxUARTDriver::write(uint8_t c)
{
if (!_initialised) {
return 0;
}
uint16_t _head;
while (BUF_SPACE(_writebuf) == 0) {
if (_nonblocking_writes) {
return 0;
}
hal.scheduler->delay(1);
}
_writebuf[_writebuf_tail] = c;
BUF_ADVANCETAIL(_writebuf, 1);
return 1;
}
/*
write size bytes to the write buffer
*/
size_t LinuxUARTDriver::write(const uint8_t *buffer, size_t size)
{
if (!_initialised) {
return 0;
}
if (!_nonblocking_writes) {
/*
use the per-byte delay loop in write() above for blocking writes
*/
size_t ret = 0;
while (size--) {
if (write(*buffer++) != 1) break;
ret++;
}
return ret;
}
uint16_t _head, space;
space = BUF_SPACE(_writebuf);
if (space == 0) {
return 0;
}
if (size > space) {
size = space;
}
if (_writebuf_tail < _head) {
// perform as single memcpy
assert(_writebuf_tail+size <= _writebuf_size);
memcpy(&_writebuf[_writebuf_tail], buffer, size);
BUF_ADVANCETAIL(_writebuf, size);
return size;
}
// perform as two memcpy calls
uint16_t n = _writebuf_size - _writebuf_tail;
if (n > size) n = size;
assert(_writebuf_tail+n <= _writebuf_size);
memcpy(&_writebuf[_writebuf_tail], buffer, n);
BUF_ADVANCETAIL(_writebuf, n);
buffer += n;
n = size - n;
if (n > 0) {
assert(_writebuf_tail+n <= _writebuf_size);
memcpy(&_writebuf[_writebuf_tail], buffer, n);
BUF_ADVANCETAIL(_writebuf, n);
}
return size;
}
/*
try writing n bytes, handling an unresponsive port
*/
int LinuxUARTDriver::_write_fd(const uint8_t *buf, uint16_t n)
{
int ret = 0;
ret = _device->write(buf, n);
if (ret > 0) {
BUF_ADVANCEHEAD(_writebuf, ret);
return ret;
}
return ret;
}
/*
try reading n bytes, handling an unresponsive port
*/
int LinuxUARTDriver::_read_fd(uint8_t *buf, uint16_t n)
{
int ret;
ret = _device->read(buf, n);
if (ret > 0) {
BUF_ADVANCETAIL(_readbuf, ret);
}
return ret;
}
/*
push any pending bytes to/from the serial port. This is called at
1kHz in the timer thread. Doing it this way reduces the system call
overhead in the main task enormously.
*/
void LinuxUARTDriver::_timer_tick(void)
{
uint16_t n;
if (!_initialised) return;
_in_timer = true;
// write any pending bytes
uint16_t _tail;
n = BUF_AVAILABLE(_writebuf);
if (_packetise && n > 0 && _writebuf[_writebuf_head] == 254) {
// this looks like a MAVLink packet - try to write on
// packet boundaries when possible
if (n < 8) {
n = 0;
} else {
// the length of the packet is the 2nd byte, and mavlink
// packets have a 6 byte header plus 2 byte checksum,
// giving len+8 bytes
uint16_t ofs = (_writebuf_head + 1) % _writebuf_size;
uint8_t len = _writebuf[ofs];
if (n < len+8) {
// we don't have a full packet yet
n = 0;
} else if (n > len+8) {
// send just 1 packet at a time (so MAVLink packets
// are aligned on UDP boundaries)
n = len+8;
}
}
}
if (n > 0) {
uint16_t n1 = _writebuf_size - _writebuf_head;
if (n1 >= n) {
// do as a single write
_write_fd(&_writebuf[_writebuf_head], n);
} else {
// split into two writes
if (_packetise) {
// keep as a single UDP packet
uint8_t tmpbuf[n];
memcpy(tmpbuf, &_writebuf[_writebuf_head], n1);
if (n > n1) {
memcpy(&tmpbuf[n1], &_writebuf[0], n-n1);
}
_write_fd(tmpbuf, n);
} else {
int ret = _write_fd(&_writebuf[_writebuf_head], n1);
if (ret == n1 && n > n1) {
_write_fd(&_writebuf[_writebuf_head], n - n1);
}
}
}
}
// try to fill the read buffer
uint16_t _head;
n = BUF_SPACE(_readbuf);
if (n > 0) {
uint16_t n1 = _readbuf_size - _readbuf_tail;
if (n1 >= n) {
// one read will do
assert(_readbuf_tail+n <= _readbuf_size);
_read_fd(&_readbuf[_readbuf_tail], n);
} else {
assert(_readbuf_tail+n1 <= _readbuf_size);
int ret = _read_fd(&_readbuf[_readbuf_tail], n1);
if (ret == n1 && n > n1) {
assert(_readbuf_tail+(n-n1) <= _readbuf_size);
_read_fd(&_readbuf[_readbuf_tail], n - n1);
}
}
}
_in_timer = false;
}
#endif // CONFIG_HAL_BOARD