ardupilot/ArduCopter/ArduCopter.pde

1575 lines
43 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V2.0.51"
/*
ArduCopter Version 2.0 Beta
Authors: Jason Short
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Special Thanks for Contributors:
Hein Hollander :Octo Support
Dani Saez :V Ocoto Support
Max Levine :Tri Support, Graphics
Jose Julio :Stabilization Control laws
Randy MacKay :Heli Support
Jani Hiriven :Testing feedback
Andrew Tridgell :Mavlink Support
James Goppert :Mavlink Support
Doug Weibel :Libraries
Mike Smith :Libraries, Coding support
HappyKillmore :Mavlink GCS
Michael Oborne :Mavlink GCS
Jack Dunkle :Alpha testing
Christof Schmid :Alpha testing
Oliver :Piezo support
Guntars :Arming safety suggestion
And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <Wire.h> // Arduino I2C lib
#include <SPI.h> // Arduino SPI lib
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_AnalogSource.h>
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_PeriodicProcess.h> // Parent header of Timer and TimerAperiodic
// (only included for makefile libpath to work)
#include <AP_TimerProcess.h> // TimerProcess is the scheduler for MPU6000 reads.
#include <AP_TimerAperiodicProcess.h> // TimerAperiodicProcess is the scheduler for ADC reads.
#include <AP_DCM.h> // ArduPilot Mega DCM Library
#include <APM_PI.h> // PI library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
#include <AP_OpticalFlow.h> // Optical Flow library
#include <ModeFilter.h>
#include <AP_Relay.h> // APM relay
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <memcheck.h>
// Configuration
#include "defines.h"
#include "config.h"
// Local modules
#include "Parameters.h"
#include "GCS.h"
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
Arduino_Mega_ISR_Registry isr_registry;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// RC Hardware
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_APM_HARDWARE == APM_HARDWARE_PURPLE
APM_RC_Purple APM_RC;
#else
APM_RC_APM1 APM_RC;
#endif
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_APM_HARDWARE == APM_HARDWARE_PURPLE
DataFlash_Purple DataFlash;
#else
DataFlash_APM1 DataFlash;
#endif
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
#if CONFIG_ADC == ENABLED
AP_ADC_ADS7844 adc;
#endif
APM_BMP085_Class barometer;
AP_Compass_HMC5843 compass(Parameters::k_param_compass);
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow;
#endif
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN );
#else
AP_InertialSensor_Oilpan ins(&adc);
#endif
AP_IMU_INS imu(&ins, Parameters::k_param_IMU_calibration);
AP_DCM dcm(&imu, g_gps);
AP_TimerProcess timer_scheduler;
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
APM_BMP085_HIL_Class barometer;
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
AP_IMU_Shim imu;
AP_DCM dcm(&imu, g_gps);
AP_PeriodicProcessStub timer_scheduler;
AP_InertialSensor_Stub ins;
static int32_t gps_base_alt;
#elif HIL_MODE == HIL_MODE_ATTITUDE
AP_ADC_HIL adc;
AP_DCM_HIL dcm;
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
AP_IMU_Shim imu; // never used
AP_InertialSensor_Stub ins;
AP_PeriodicProcessStub timer_scheduler;
#ifdef OPTFLOW_ENABLED
AP_OpticalFlow_ADNS3080 optflow;
#endif
static int32_t gps_base_alt;
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
GCS_MAVLINK gcs0(Parameters::k_param_streamrates_port0);
GCS_MAVLINK gcs3(Parameters::k_param_streamrates_port3);
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilter sonar_mode_filter;
#if CONFIG_SONAR == ENABLED
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
AP_AnalogSource_ADC sonar_analog_source( &adc,
CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN);
#endif
#if SONAR_TYPE == MAX_SONAR_XL
AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter);
#else
#error Unrecognised SONAR_TYPE setting.
#endif
#endif
// agmatthews USERHOOKS
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
#include USERHOOK_VARIABLES
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
static const char *comma = ",";
static const char* flight_mode_strings[] = {
"STABILIZE",
"ACRO",
"ALT_HOLD",
"AUTO",
"GUIDED",
"LOITER",
"RTL",
"CIRCLE",
"POSITION"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
5 Mode - 3 position switch
6 User assignable
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
8 TBD
*/
// temp
static int16_t y_actual_speed;
static int16_t y_rate_error;
// calc the
static int16_t x_actual_speed;
static int16_t x_rate_error;
// Radio
// -----
static byte control_mode = STABILIZE;
static byte old_control_mode = STABILIZE;
static byte oldSwitchPosition; // for remembering the control mode switch
static int16_t motor_out[8];
static bool do_simple = false;
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
static bool rc_override_active = false;
static uint32_t rc_override_fs_timer = 0;
// Heli
// ----
#if FRAME_CONFIG == HELI_FRAME
static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos
static int16_t heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly
static int32_t heli_servo_out[4]; // used for servo averaging for analog servos
static int16_t heli_servo_out_count = 0; // use for servo averaging
#endif
// Failsafe
// --------
static boolean failsafe; // did our throttle dip below the failsafe value?
static boolean ch3_failsafe;
static boolean motor_armed;
static boolean motor_auto_armed; // if true,
// PIDs
// ----
static Vector3f omega;
float tuning_value;
// LED output
// ----------
static boolean motor_light; // status of the Motor safety
static boolean GPS_light; // status of the GPS light
static byte led_mode = NORMAL_LEDS;
// GPS variables
// -------------
static const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
static float scaleLongUp = 1; // used to reverse longitude scaling
static float scaleLongDown = 1; // used to reverse longitude scaling
static byte ground_start_count = 10; // have we achieved first lock and set Home?
static bool did_ground_start = false; // have we ground started after first arming
// Location & Navigation
// ---------------------
static bool nav_ok;
static const float radius_of_earth = 6378100; // meters
static const float gravity = 9.81; // meters/ sec^2
static int32_t target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
static byte wp_control; // used to control - navgation or loiter
static byte command_nav_index; // current command memory location
static byte prev_nav_index;
static byte command_cond_index; // current command memory location
//static byte command_nav_ID; // current command ID
//static byte command_cond_ID; // current command ID
static byte wp_verify_byte; // used for tracking state of navigating waypoints
static float cos_roll_x = 1;
static float cos_pitch_x = 1;
static float cos_yaw_x = 1;
static float sin_pitch_y, sin_yaw_y, sin_roll_y;
static int32_t initial_simple_bearing; // used for Simple mode
static float simple_sin_y, simple_cos_x;
static int8_t jump = -10; // used to track loops in jump command
static int16_t waypoint_speed_gov;
static float circle_angle;
// replace with param
static const float circle_rate = 0.0872664625;
// Acro
#if CH7_OPTION == CH7_FLIP
static bool do_flip = false;
#endif
static boolean trim_flag;
static int8_t CH7_wp_index;
// Airspeed
// --------
static int16_t airspeed; // m/s * 100
// Location Errors
// ---------------
static int32_t yaw_error; // how off are we pointed
static int32_t long_error, lat_error; // temp for debugging
// Battery Sensors
// ---------------
static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
static float current_amps;
static float current_total;
static bool low_batt = false;
// Barometer Sensor variables
// --------------------------
static int32_t abs_pressure;
static int32_t ground_pressure;
static int16_t ground_temperature;
// Altitude Sensor variables
// ----------------------
static byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR
static int32_t altitude_error; // meters * 100 we are off in altitude
static int16_t climb_rate; // m/s * 100
static int16_t sonar_alt;
static int16_t old_sonar_alt;
static int16_t sonar_rate;
static int16_t baro_alt;
static int16_t old_baro_alt;
static int16_t baro_rate;
// flight mode specific
// --------------------
static byte yaw_mode;
static byte roll_pitch_mode;
static byte throttle_mode;
static boolean takeoff_complete; // Flag for using take-off controls
static boolean land_complete;
static int32_t old_alt; // used for managing altitude rates
static int16_t velocity_land;
static byte yaw_tracking = MAV_ROI_WPNEXT; // no tracking, point at next wp, or at a target
static int16_t manual_boost; // used in adjust altitude to make changing alt faster
static int16_t angle_boost; // used in adjust altitude to make changing alt faster
// Loiter management
// -----------------
static int32_t original_target_bearing; // deg * 100, used to check we are not passing the WP
static int32_t old_target_bearing; // used to track difference in angle
static int16_t loiter_total; // deg : how many times to loiter * 360
static int16_t loiter_sum; // deg : how far we have turned around a waypoint
static uint32_t loiter_time; // millis : when we started LOITER mode
static unsigned loiter_time_max; // millis : how long to stay in LOITER mode
// these are the values for navigation control functions
// ----------------------------------------------------
static int32_t nav_roll; // deg * 100 : target roll angle
static int32_t nav_pitch; // deg * 100 : target pitch angle
static int32_t nav_yaw; // deg * 100 : target yaw angle
static int32_t auto_yaw; // deg * 100 : target yaw angle
static int32_t nav_lat; // for error calcs
static int32_t nav_lon; // for error calcs
static int16_t nav_throttle; // 0-1000 for throttle control
static int16_t crosstrack_error;
static uint32_t throttle_integrator; // used to integrate throttle output to predict battery life
static bool invalid_throttle; // used to control when we calculate nav_throttle
//static bool set_throttle_cruise_flag = false; // used to track the throttle crouse value
static int32_t command_yaw_start; // what angle were we to begin with
static uint32_t command_yaw_start_time; // when did we start turning
static uint16_t command_yaw_time; // how long we are turning
static int32_t command_yaw_end; // what angle are we trying to be
static int32_t command_yaw_delta; // how many degrees will we turn
static int16_t command_yaw_speed; // how fast to turn
static byte command_yaw_dir;
static byte command_yaw_relative;
static int16_t auto_level_counter;
// Waypoints
// ---------
static int32_t wp_distance; // meters - distance between plane and next waypoint
static int32_t wp_totalDistance; // meters - distance between old and next waypoint
//static byte next_wp_index; // Current active command index
// repeating event control
// -----------------------
static byte event_id; // what to do - see defines
static uint32_t event_timer; // when the event was asked for in ms
static uint16_t event_delay; // how long to delay the next firing of event in millis
static int16_t event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
static int16_t event_value; // per command value, such as PWM for servos
static int16_t event_undo_value; // the value used to undo commands
//static byte repeat_forever;
//static byte undo_event; // counter for timing the undo
// delay command
// --------------
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
static int32_t condition_start;
//static int16_t condition_rate;
// land command
// ------------
static int32_t land_start; // when we intiated command in millis()
static int32_t original_alt; // altitide reference for start of command
// 3D Location vectors
// -------------------
static struct Location home; // home location
static struct Location prev_WP; // last waypoint
static struct Location current_loc; // current location
static struct Location next_WP; // next waypoint
static struct Location target_WP; // where do we want to you towards?
static struct Location command_nav_queue; // command preloaded
static struct Location command_cond_queue; // command preloaded
static struct Location guided_WP; // guided mode waypoint
static int32_t target_altitude; // used for
static boolean home_is_set; // Flag for if we have g_gps lock and have set the home location
// IMU variables
// -------------
static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
// Performance monitoring
// ----------------------
static int32_t perf_mon_timer;
//static float imu_health; // Metric based on accel gain deweighting
static int16_t gps_fix_count;
static byte gps_watchdog;
static int pmTest1;
// System Timers
// --------------
static uint32_t fast_loopTimer; // Time in miliseconds of main control loop
static byte medium_loopCounter; // Counters for branching from main control loop to slower loops
static uint32_t fiftyhz_loopTimer;
static byte slow_loopCounter;
static int16_t superslow_loopCounter;
static byte simple_timer; // for limiting the execution of flight mode thingys
static float dTnav; // Delta Time in milliseconds for navigation computations
static uint32_t nav_loopTimer; // used to track the elapsed ime for GPS nav
static byte counter_one_herz;
static bool GPS_enabled = false;
static bool new_radio_frame;
AP_Relay relay;
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
memcheck_init();
init_ardupilot();
}
void loop()
{
int32_t timer = micros();
// We want this to execute fast
// ----------------------------
if ((timer - fast_loopTimer) >= 5000) {
//PORTK |= B00010000;
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
fast_loopTimer = timer;
// Execute the fast loop
// ---------------------
fast_loop();
}
//PORTK &= B11101111;
if ((timer - fiftyhz_loopTimer) >= 20000) {
fiftyhz_loopTimer = timer;
//PORTK |= B01000000;
// reads all of the necessary trig functions for cameras, throttle, etc.
update_trig();
// perform 10hz tasks
medium_loop();
// Stuff to run at full 50hz, but after the loops
fifty_hz_loop();
counter_one_herz++;
if(counter_one_herz == 50){
super_slow_loop();
counter_one_herz = 0;
}
if (millis() - perf_mon_timer > 1200 /*20000*/) {
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
gps_fix_count = 0;
perf_mon_timer = millis();
}
//PORTK &= B10111111;
}
}
// PORTK |= B01000000;
// PORTK &= B10111111;
// Main loop
static void fast_loop()
{
// try to send any deferred messages if the serial port now has
// some space available
gcs_send_message(MSG_RETRY_DEFERRED);
// Read radio
// ----------
read_radio();
// IMU DCM Algorithm
read_AHRS();
// custom code/exceptions for flight modes
// ---------------------------------------
update_yaw_mode();
update_roll_pitch_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
//if(motor_armed)
//Log_Write_Attitude();
// agmatthews - USERHOOKS
#ifdef USERHOOK_FASTLOOP
USERHOOK_FASTLOOP
#endif
}
static void medium_loop()
{
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
medium_loopCounter++;
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled){
optflow.read();
optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log
if (g.log_bitmask & MASK_LOG_OPTFLOW){
Log_Write_Optflow();
}
}
#endif
if(GPS_enabled){
update_GPS();
}
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
if(g.compass_enabled){
compass.read(); // Read magnetometer
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
}
#endif
// auto_trim, uses an auto_level algorithm
auto_trim();
// record throttle output
// ------------------------------
throttle_integrator += g.rc_3.servo_out;
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
// Auto control modes:
if(nav_ok){
// clear nav flag
nav_ok = false;
// invalidate GPS data
// -------------------
g_gps->new_data = false;
// calculate the copter's desired bearing and WP distance
// ------------------------------------------------------
if(navigate()){
// control mode specific updates
// -----------------------------
update_navigation();
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
}
}
break;
// command processing
//-------------------
case 2:
medium_loopCounter++;
// Read altitude from sensors
// --------------------------
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
update_altitude();
#endif
// invalidate the throttle hold value
// ----------------------------------
invalid_throttle = true;
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
// perform next command
// --------------------
if(control_mode == AUTO){
if(home_is_set == true && g.command_total > 1){
update_commands(true);
}
}
if(motor_armed){
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
}
// send all requested output streams with rates requested
// between 5 and 45 Hz
gcs_data_stream_send(5,45);
if (g.log_bitmask & MASK_LOG_MOTORS)
Log_Write_Motors();
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
if (g.battery_monitoring != 0){
read_battery();
}
// Accel trims = hold > 2 seconds
// Throttle cruise = switch less than 1 second
// --------------------------------------------
read_trim_switch();
// Check for engine arming
// -----------------------
arm_motors();
// Do an extra baro read
// ---------------------
#if HIL_MODE != HIL_MODE_ATTITUDE
barometer.Read();
#endif
// agmatthews - USERHOOKS
#ifdef USERHOOK_MEDIUMLOOP
USERHOOK_MEDIUMLOOP
#endif
slow_loop();
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
}
// stuff that happens at 50 hz
// ---------------------------
static void fifty_hz_loop()
{
// moved to slower loop
// --------------------
update_throttle_mode();
// Read Sonar
// ----------
# if CONFIG_SONAR == ENABLED
if(g.sonar_enabled){
sonar_alt = sonar.read();
}
#endif
// agmatthews - USERHOOKS
#ifdef USERHOOK_50HZLOOP
USERHOOK_50HZLOOP
#endif
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
camera_stabilization();
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude();
if (g.log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#endif
// kick the GCS to process uplink data
gcs_update();
gcs_data_stream_send(45,1000);
#if FRAME_CONFIG == TRI_FRAME
// servo Yaw
g.rc_4.calc_pwm();
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
#endif
}
static void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
slow_loopCounter++;
superslow_loopCounter++;
if(superslow_loopCounter > 1200){
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled){
compass.save_offsets();
superslow_loopCounter = 0;
}
#endif
}
break;
case 1:
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
// Read main battery voltage if hooked up - does not read the 5v from radio
// ------------------------------------------------------------------------
//#if BATTERY_EVENT == 1
// read_battery();
//#endif
#if AUTO_RESET_LOITER == 1
if(control_mode == LOITER){
//if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 1500){
// reset LOITER to current position
//next_WP = current_loc;
//}
}
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
// blink if we are armed
update_lights();
// send all requested output streams with rates requested
// between 1 and 5 Hz
gcs_data_stream_send(1,5);
if(g.radio_tuning > 0)
tuning();
#if MOTOR_LEDS == 1
update_motor_leds();
#endif
break;
default:
slow_loopCounter = 0;
break;
}
// agmatthews - USERHOOKS
#ifdef USERHOOK_SLOWLOOP
USERHOOK_SLOWLOOP
#endif
}
// 1Hz loop
static void super_slow_loop()
{
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
gcs_send_message(MSG_HEARTBEAT);
// agmatthews - USERHOOKS
#ifdef USERHOOK_SUPERSLOWLOOP
USERHOOK_SUPERSLOWLOOP
#endif
}
static void update_GPS(void)
{
g_gps->update();
update_GPS_light();
//current_loc.lng = 377697000; // Lon * 10 * *7
//current_loc.lat = -1224318000; // Lat * 10 * *7
//current_loc.alt = 100; // alt * 10 * *7
//return;
if(gps_watchdog < 12){
gps_watchdog++;
}else{
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
nav_roll >>= 1;
nav_pitch >>= 1;
}
if (g_gps->new_data && g_gps->fix) {
gps_watchdog = 0;
// OK to run the nav routines
nav_ok = true;
// for performance
// ---------------
gps_fix_count++;
// we are not tracking I term on navigation, so this isn't needed
dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
nav_loopTimer = millis();
// prevent runup from bad GPS
dTnav = min(dTnav, 1.0);
if(ground_start_count > 1){
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
}else{
init_home();
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
if (g.log_bitmask & MASK_LOG_GPS){
Log_Write_GPS();
}
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode
update_altitude();
#endif
} else {
g_gps->new_data = false;
}
}
void update_yaw_mode(void)
{
switch(yaw_mode){
case YAW_ACRO:
g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in);
return;
break;
case YAW_HOLD:
// calcualte new nav_yaw offset
if (control_mode <= STABILIZE){
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in);
}else{
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, 1);
}
break;
case YAW_LOOK_AT_HOME:
//nav_yaw updated in update_navigation()
break;
case YAW_AUTO:
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20);
nav_yaw = wrap_360(nav_yaw);
break;
}
// Yaw control
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
//Serial.printf("4: %d\n",g.rc_4.servo_out);
}
void update_roll_pitch_mode(void)
{
#if CH7_OPTION == CH7_FLIP
if (do_flip){
roll_flip();
return;
}
#endif
int control_roll = 0, control_pitch = 0;
//read_radio();
if(do_simple && new_radio_frame){
new_radio_frame = false;
simple_timer++;
int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100;
if (simple_timer == 1){
// roll
simple_cos_x = sin(radians(90 - delta));
}else if (simple_timer > 2){
// pitch
simple_sin_y = cos(radians(90 - delta));
simple_timer = 0;
}
// Rotate input by the initial bearing
control_roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
control_pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
g.rc_1.control_in = control_roll;
g.rc_2.control_in = control_pitch;
}
switch(roll_pitch_mode){
case ROLL_PITCH_ACRO:
g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in);
break;
case ROLL_PITCH_STABLE:
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in);
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in);
break;
case ROLL_PITCH_AUTO:
// mix in user control with Nav control
control_roll = g.rc_1.control_mix(nav_roll);
control_pitch = g.rc_2.control_mix(nav_pitch);
g.rc_1.servo_out = get_stabilize_roll(control_roll);
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
break;
}
}
// 50 hz update rate, not 250
void update_throttle_mode(void)
{
switch(throttle_mode){
case THROTTLE_MANUAL:
if (g.rc_3.control_in > 0){
#if FRAME_CONFIG == HELI_FRAME
g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in);
#else
angle_boost = get_angle_boost(g.rc_3.control_in);
g.rc_3.servo_out = g.rc_3.control_in + angle_boost;
#endif
}else{
g.pi_stabilize_roll.reset_I();
g.pi_stabilize_pitch.reset_I();
g.pi_rate_roll.reset_I();
g.pi_rate_pitch.reset_I();
g.rc_3.servo_out = 0;
}
break;
case THROTTLE_HOLD:
// allow interactive changing of atitude
adjust_altitude();
// fall through
case THROTTLE_AUTO:
// calculate angle boost
angle_boost = get_angle_boost(g.throttle_cruise);
// manual command up or down?
if(manual_boost != 0){
//remove alt_hold_velocity when implemented
#if FRAME_CONFIG == HELI_FRAME
g.rc_3.servo_out = heli_get_angle_boost(g.throttle_cruise + manual_boost + get_z_damping());
#else
g.rc_3.servo_out = g.throttle_cruise + angle_boost + manual_boost + get_z_damping();
#endif
// reset next_WP.alt
next_WP.alt = max(current_loc.alt, 100);
}else{
// 10hz, don't run up i term
if(invalid_throttle && motor_auto_armed == true){
// how far off are we
altitude_error = get_altitude_error();
// get the AP throttle
nav_throttle = get_nav_throttle(altitude_error);
// clear the new data flag
invalid_throttle = false;
}
#if FRAME_CONFIG == HELI_FRAME
g.rc_3.servo_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle + get_z_damping());
#else
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost + get_z_damping();
#endif
}
break;
}
}
// called after a GPS read
static void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
switch(control_mode){
case AUTO:
verify_commands();
// note: wp_control is handled by commands_logic
// calculates desired Yaw
update_auto_yaw();
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case GUIDED:
wp_control = WP_MODE;
// check if we are close to point > loiter
wp_verify_byte = 0;
verify_nav_wp();
if (wp_control == WP_MODE) {
update_auto_yaw();
} else {
set_mode(LOITER);
}
update_nav_wp();
break;
case RTL:
if((wp_distance <= g.waypoint_radius) || check_missed_wp()){
// lets just jump to Loiter Mode after RTL
set_mode(LOITER);
}else{
// calculates desired Yaw
// XXX this is an experiment
#if FRAME_CONFIG == HELI_FRAME
update_auto_yaw();
#endif
wp_control = WP_MODE;
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
// switch passthrough to LOITER
case LOITER:
case POSITION:
wp_control = LOITER_MODE;
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case CIRCLE:
yaw_tracking = MAV_ROI_WPNEXT;
wp_control = CIRCLE_MODE;
// calculates desired Yaw
update_auto_yaw();
update_nav_wp();
break;
}
if(yaw_mode == YAW_LOOK_AT_HOME){
if(home_is_set){
//nav_yaw = point_at_home_yaw();
nav_yaw = get_bearing(&current_loc, &home);
} else {
nav_yaw = 0;
}
}
}
static void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before dcm update
gcs_update();
#endif
dcm.update_DCM_fast();
omega = dcm.get_gyro();
}
static void update_trig(void){
Vector2f yawvector;
Matrix3f temp = dcm.get_dcm_matrix();
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
sin_pitch_y = -temp.c.x;
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x));
cos_roll_x = temp.c.z / cos_pitch_x;
sin_roll_y = temp.c.y / cos_pitch_x;
cos_yaw_x = yawvector.y; // 0 x = north
sin_yaw_y = yawvector.x; // 1 y
//flat:
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00,
// 90° = cos_yaw: 1.00, sin_yaw: 0.00,
// 180 = cos_yaw: 0.00, sin_yaw: -1.00,
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
}
// updated at 10hz
static void update_altitude()
{
altitude_sensor = BARO;
//current_loc.alt = g_gps->altitude - gps_base_alt;
//climb_rate = (g_gps->altitude - old_baro_alt) * 10;
//old_baro_alt = g_gps->altitude;
//baro_alt = g_gps->altitude;
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake out the baro and Sonar
int fake_relative_alt = g_gps->altitude - gps_base_alt;
baro_alt = fake_relative_alt;
sonar_alt = fake_relative_alt;
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz
old_baro_alt = baro_alt;
#else
// This is real life
// read in Actual Baro Altitude
baro_alt = (baro_alt + read_barometer()) >> 1;
// calc the vertical accel rate
int temp = (baro_alt - old_baro_alt) * 10;
baro_rate = (temp + baro_rate) >> 1;
old_baro_alt = baro_alt;
// sonar_alt is calculaed in a faster loop and filtered with a mode filter
#endif
if(g.sonar_enabled){
// filter out offset
float scale;
// calc rate of change for Sonar
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake outthe Sonar rate
sonar_rate = baro_rate;
#else
// This is real life
// calc the vertical accel rate
sonar_rate = (sonar_alt - old_sonar_alt) * 10;
old_sonar_alt = sonar_alt;
#endif
if(baro_alt < 800){
#if SONAR_TILT_CORRECTION == 1
// correct alt for angle of the sonar
float temp = cos_pitch_x * cos_roll_x;
temp = max(temp, 0.707);
sonar_alt = (float)sonar_alt * temp;
#endif
scale = (sonar_alt - 400) / 200;
scale = constrain(scale, 0, 1);
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt;
// solve for a blended climb_rate
climb_rate = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale;
}else{
// we must be higher than sonar, don't get tricked by bad sonar reads
current_loc.alt = baro_alt + home.alt; // home alt = 0
// dont blend, go straight baro
climb_rate = baro_rate;
}
}else{
// NO Sonar case
current_loc.alt = baro_alt + home.alt;
climb_rate = baro_rate;
}
}
static void
adjust_altitude()
{
/*
// old vert control
if(g.rc_3.control_in <= 200){
next_WP.alt -= 1; // 1 meter per second
next_WP.alt = max(next_WP.alt, (current_loc.alt - 500)); // don't go less than 4 meters below current location
next_WP.alt = max(next_WP.alt, 100); // don't go less than 1 meter
//manual_boost = (g.rc_3.control_in == 0) ? -20 : 0;
}else if (g.rc_3.control_in > 700){
next_WP.alt += 1; // 1 meter per second
next_WP.alt = min(next_WP.alt, (current_loc.alt + 500)); // don't go more than 4 meters below current location
//manual_boost = (g.rc_3.control_in == 800) ? 20 : 0;
}*/
if(g.rc_3.control_in <= 180){
// we remove 0 to 100 PWM from hover
manual_boost = g.rc_3.control_in - 180;
manual_boost = max(-120, manual_boost);
g.throttle_cruise += (g.pi_alt_hold.get_integrator() * g.pi_throttle.kP() + g.pi_throttle.get_integrator());
g.pi_alt_hold.reset_I();
g.pi_throttle.reset_I();
}else if (g.rc_3.control_in >= 650){
// we add 0 to 100 PWM to hover
manual_boost = g.rc_3.control_in - 650;
g.throttle_cruise += (g.pi_alt_hold.get_integrator() * g.pi_throttle.kP() + g.pi_throttle.get_integrator());
g.pi_alt_hold.reset_I();
g.pi_throttle.reset_I();
}else {
manual_boost = 0;
}
}
static void tuning(){
tuning_value = (float)g.rc_6.control_in / 1000.0;
switch(g.radio_tuning){
/*case CH6_STABILIZE_KP:
g.rc_6.set_range(0,2000); // 0 to 8
tuning_value = (float)g.rc_6.control_in / 100.0;
alt_hold_gain = tuning_value;
break;*/
case CH6_STABILIZE_KP:
g.rc_6.set_range(0,8000); // 0 to 8
g.pi_stabilize_roll.kP(tuning_value);
g.pi_stabilize_pitch.kP(tuning_value);
break;
case CH6_STABILIZE_KI:
g.rc_6.set_range(0,300); // 0 to .3
tuning_value = (float)g.rc_6.control_in / 1000.0;
g.pi_stabilize_roll.kI(tuning_value);
g.pi_stabilize_pitch.kI(tuning_value);
break;
case CH6_RATE_KP:
g.rc_6.set_range(0,300); // 0 to .3
g.pi_rate_roll.kP(tuning_value);
g.pi_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_KI:
g.rc_6.set_range(0,300); // 0 to .3
g.pi_rate_roll.kI(tuning_value);
g.pi_rate_pitch.kI(tuning_value);
break;
case CH6_YAW_KP:
g.rc_6.set_range(0,1000);
g.pi_stabilize_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KP:
g.rc_6.set_range(0,1000);
g.pi_rate_yaw.kP(tuning_value);
break;
case CH6_THROTTLE_KP:
g.rc_6.set_range(0,1000); // 0 to 1
g.pi_throttle.kP(tuning_value);
break;
case CH6_TOP_BOTTOM_RATIO:
g.rc_6.set_range(800,1000); // .8 to 1
g.top_bottom_ratio = tuning_value;
break;
case CH6_RELAY:
g.rc_6.set_range(0,1000);
if (g.rc_6.control_in > 525) relay.on();
if (g.rc_6.control_in < 475) relay.off();
break;
case CH6_TRAVERSE_SPEED:
g.rc_6.set_range(0,1000);
g.waypoint_speed_max = g.rc_6.control_in;
break;
case CH6_LOITER_P:
g.rc_6.set_range(0,1000);
g.pi_loiter_lat.kP(tuning_value);
g.pi_loiter_lon.kP(tuning_value);
break;
case CH6_NAV_P:
g.rc_6.set_range(0,6000);
g.pi_nav_lat.kP(tuning_value);
g.pi_nav_lon.kP(tuning_value);
break;
#if FRAME_CONFIG == HELI_FRAME
case CH6_HELI_EXTERNAL_GYRO:
g.rc_6.set_range(1000,2000);
g.heli_ext_gyro_gain = tuning_value * 1000;
break;
#endif
case CH6_THR_HOLD_KP:
g.rc_6.set_range(0,1000); // 0 to 1
g.pi_alt_hold.kP(tuning_value);
break;
}
}
static void update_nav_wp()
{
if(wp_control == LOITER_MODE){
// calc a pitch to the target
calc_location_error(&next_WP);
// use error as the desired rate towards the target
calc_loiter(long_error, lat_error);
// rotate pitch and roll to the copter frame of reference
calc_loiter_pitch_roll();
}else if(wp_control == CIRCLE_MODE){
// check if we have missed the WP
int loiter_delta = (target_bearing - old_target_bearing)/100;
// reset the old value
old_target_bearing = target_bearing;
// wrap values
if (loiter_delta > 180) loiter_delta -= 360;
if (loiter_delta < -180) loiter_delta += 360;
// sum the angle around the WP
loiter_sum += loiter_delta;
// create a virtual waypoint that circles the next_WP
// Count the degrees we have circulated the WP
//int circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100;
circle_angle += (circle_rate * dTnav);
//1° = 0.0174532925 radians
// wrap
if (circle_angle > 6.28318531)
circle_angle -= 6.28318531;
target_WP.lng = next_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp);
target_WP.lat = next_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle));
// calc the lat and long error to the target
calc_location_error(&target_WP);
// use error as the desired rate towards the target
// nav_lon, nav_lat is calculated
calc_loiter(long_error, lat_error);
//CIRCLE: angle:29, dist:0, lat:400, lon:242
// rotate pitch and roll to the copter frame of reference
calc_loiter_pitch_roll();
//int angleTest = degrees(circle_angle);
//int nroll = nav_roll;
//int npitch = nav_pitch;
//Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll);
} else {
// use error as the desired rate towards the target
calc_nav_rate(g.waypoint_speed_max);
// rotate pitch and roll to the copter frame of reference
calc_nav_pitch_roll();
}
}
static void update_auto_yaw()
{
// this tracks a location so the copter is always pointing towards it.
if(yaw_tracking == MAV_ROI_LOCATION){
auto_yaw = get_bearing(&current_loc, &target_WP);
}else if(yaw_tracking == MAV_ROI_WPNEXT){
auto_yaw = target_bearing;
}
// MAV_ROI_NONE = basic Yaw hold
}