mirror of https://github.com/ArduPilot/ardupilot
474 lines
14 KiB
C++
474 lines
14 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
//
|
|
// This is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License as published by the
|
|
// Free Software Foundation; either version 2.1 of the License, or (at
|
|
// your option) any later version.
|
|
//
|
|
|
|
/// @file AP_Param.h
|
|
/// @brief A system for managing and storing variables that are of
|
|
/// general interest to the system.
|
|
|
|
#ifndef AP_PARAM_H
|
|
#define AP_PARAM_H
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
|
|
#include <avr/pgmspace.h>
|
|
#include <avr/eeprom.h>
|
|
|
|
#define AP_MAX_NAME_SIZE 15
|
|
#define AP_NESTED_GROUPS_ENABLED
|
|
|
|
// a varient of offsetof() to work around C++ restrictions.
|
|
// this can only be used when the offset of a variable in a object
|
|
// is constant and known at compile time
|
|
#define AP_VAROFFSET(type, element) (((uintptr_t)(&((const type *)1)->element))-1)
|
|
|
|
// find the type of a variable given the class and element
|
|
#define AP_CLASSTYPE(class, element) (((const class *)1)->element.vtype)
|
|
|
|
// declare a group var_info line
|
|
#define AP_GROUPINFO(name, idx, class, element) { AP_CLASSTYPE(class, element), idx, name, AP_VAROFFSET(class, element) }
|
|
|
|
// declare a nested group entry in a group var_info
|
|
#ifdef AP_NESTED_GROUPS_ENABLED
|
|
#define AP_NESTEDGROUPINFO(class, idx) { AP_PARAM_GROUP, idx, "", 0, class::var_info }
|
|
#endif
|
|
|
|
#define AP_GROUPEND { AP_PARAM_NONE, 0xFF, "" }
|
|
|
|
enum ap_var_type {
|
|
AP_PARAM_NONE = 0,
|
|
AP_PARAM_INT8,
|
|
AP_PARAM_INT16,
|
|
AP_PARAM_INT32,
|
|
AP_PARAM_FLOAT,
|
|
AP_PARAM_VECTOR3F,
|
|
AP_PARAM_VECTOR6F,
|
|
AP_PARAM_MATRIX3F,
|
|
AP_PARAM_GROUP
|
|
};
|
|
|
|
/// Base class for variables.
|
|
///
|
|
/// Provides naming and lookup services for variables.
|
|
///
|
|
class AP_Param
|
|
{
|
|
public:
|
|
// the Info and GroupInfo structures are passed by the main
|
|
// program in setup() to give information on how variables are
|
|
// named and their location in memory
|
|
struct GroupInfo {
|
|
uint8_t type; // AP_PARAM_*
|
|
uint8_t idx; // identifier within the group
|
|
const char name[AP_MAX_NAME_SIZE];
|
|
uintptr_t offset; // offset within the object
|
|
const struct GroupInfo *group_info;
|
|
};
|
|
struct Info {
|
|
uint8_t type; // AP_PARAM_*
|
|
const char name[AP_MAX_NAME_SIZE];
|
|
uint8_t key; // k_param_*
|
|
void *ptr; // pointer to the variable in memory
|
|
const struct GroupInfo *group_info;
|
|
};
|
|
|
|
// a token used for first()/next() state
|
|
typedef struct {
|
|
uint8_t key;
|
|
uint8_t group_element;
|
|
uint8_t idx; // offset into array types
|
|
} ParamToken;
|
|
|
|
// called once at startup to setup the _var_info[] table. This
|
|
// will also check the EEPROM header and re-initialise it if the
|
|
// wrong version is found
|
|
static bool setup(const struct Info *info, uint8_t num_vars, uint16_t eeprom_size);
|
|
|
|
// return true if AP_Param has been initialised via setup()
|
|
static bool initialised(void);
|
|
|
|
/// Copy the variable's name, prefixed by any containing group name, to a buffer.
|
|
///
|
|
/// If the variable has no name, the buffer will contain an empty string.
|
|
///
|
|
/// Note that if the combination of names is larger than the buffer, the
|
|
/// result in the buffer will be truncated.
|
|
///
|
|
/// @param buffer The destination buffer
|
|
/// @param bufferSize Total size of the destination buffer.
|
|
///
|
|
void copy_name(char *buffer, size_t bufferSize, bool force_scalar=false);
|
|
|
|
/// Find a variable by name.
|
|
///
|
|
/// If the variable has no name, it cannot be found by this interface.
|
|
///
|
|
/// @param name The full name of the variable to be found.
|
|
/// @return A pointer to the variable, or NULL if
|
|
/// it does not exist.
|
|
///
|
|
static AP_Param *find(const char *name, enum ap_var_type *ptype);
|
|
|
|
/// Save the current value of the variable to EEPROM.
|
|
///
|
|
/// @return True if the variable was saved successfully.
|
|
///
|
|
bool save(void);
|
|
|
|
/// Load the variable from EEPROM.
|
|
///
|
|
/// @return True if the variable was loaded successfully.
|
|
///
|
|
bool load(void);
|
|
|
|
/// Load all variables from EEPROM
|
|
///
|
|
/// This function performs a best-efforts attempt to load all
|
|
/// of the variables from EEPROM. If some fail to load, their
|
|
/// values will remain as they are.
|
|
///
|
|
/// @return False if any variable failed to load
|
|
///
|
|
static bool load_all(void);
|
|
|
|
/// Erase all variables in EEPROM.
|
|
///
|
|
static void erase_all(void);
|
|
|
|
/// print the value of all variables
|
|
static void show_all(void);
|
|
|
|
/// Returns the first variable
|
|
///
|
|
/// @return The first variable in _var_info, or NULL if
|
|
/// there are none.
|
|
///
|
|
static AP_Param *first(ParamToken *token, enum ap_var_type *ptype);
|
|
|
|
/// Returns the next variable in _var_info, recursing into groups
|
|
/// as needed
|
|
static AP_Param *next(ParamToken *token, enum ap_var_type *ptype);
|
|
|
|
/// Returns the next scalar variable in _var_info, recursing into groups
|
|
/// as needed
|
|
static AP_Param *next_scalar(ParamToken *token, enum ap_var_type *ptype);
|
|
|
|
/// cast a variable to a float given its type
|
|
float cast_to_float(enum ap_var_type type);
|
|
|
|
private:
|
|
/// EEPROM header
|
|
///
|
|
/// This structure is placed at the head of the EEPROM to indicate
|
|
/// that the ROM is formatted for AP_Param.
|
|
///
|
|
struct EEPROM_header {
|
|
uint8_t magic[2];
|
|
uint8_t revision;
|
|
uint8_t spare;
|
|
};
|
|
|
|
// This header is prepended to a variable stored in EEPROM.
|
|
struct Param_header {
|
|
uint8_t key;
|
|
uint8_t group_element;
|
|
uint8_t type;
|
|
};
|
|
|
|
// number of bits in each level of nesting of groups
|
|
static const uint8_t _group_level_shift = 4;
|
|
static const uint8_t _group_bits = 8;
|
|
|
|
static const uint8_t _sentinal_key = 0xFF;
|
|
static const uint8_t _sentinal_type = 0xFF;
|
|
static const uint8_t _sentinal_group = 0xFF;
|
|
|
|
static bool check_group_info(const struct GroupInfo *group_info, uint16_t *total_size, uint8_t max_bits);
|
|
static bool duplicate_key(uint8_t vindex, uint8_t key);
|
|
static bool check_var_info(void);
|
|
const struct Info *find_var_info_group(const struct GroupInfo *group_info,
|
|
uint8_t vindex,
|
|
uint8_t group_base,
|
|
uint8_t group_shift,
|
|
uint8_t *group_element,
|
|
const struct GroupInfo **group_ret,
|
|
uint8_t *idx);
|
|
const struct Info *find_var_info(uint8_t *group_element,
|
|
const struct GroupInfo **group_ret,
|
|
uint8_t *idx);
|
|
static const struct Info *find_by_header_group(struct Param_header phdr, void **ptr,
|
|
uint8_t vindex,
|
|
const struct GroupInfo *group_info,
|
|
uint8_t group_base,
|
|
uint8_t group_shift);
|
|
static const struct Info *find_by_header(struct Param_header phdr, void **ptr);
|
|
void add_vector3f_suffix(char *buffer, size_t buffer_size, uint8_t idx);
|
|
static AP_Param *find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype);
|
|
static void write_sentinal(uint16_t ofs);
|
|
bool scan(const struct Param_header *phdr, uint16_t *pofs);
|
|
static const uint8_t type_size(enum ap_var_type type);
|
|
static void eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size);
|
|
static AP_Param *next_group(uint8_t vindex, const struct GroupInfo *group_info,
|
|
bool *found_current,
|
|
uint8_t group_base,
|
|
uint8_t group_shift,
|
|
ParamToken *token,
|
|
enum ap_var_type *ptype);
|
|
|
|
static uint16_t _eeprom_size;
|
|
static uint8_t _num_vars;
|
|
static const struct Info *_var_info;
|
|
|
|
// values filled into the EEPROM header
|
|
static const uint8_t k_EEPROM_magic0 = 0x50;
|
|
static const uint8_t k_EEPROM_magic1 = 0x41; ///< "AP"
|
|
static const uint8_t k_EEPROM_revision = 5; ///< current format revision
|
|
};
|
|
|
|
/// Template class for scalar variables.
|
|
///
|
|
/// Objects of this type have a value, and can be treated in many ways as though they
|
|
/// were the value.
|
|
///
|
|
/// @tparam T The scalar type of the variable
|
|
/// @tparam PT The AP_PARAM_* type
|
|
///
|
|
template<typename T, ap_var_type PT>
|
|
class AP_ParamT : public AP_Param
|
|
{
|
|
public:
|
|
/// Constructor for scalar variable.
|
|
///
|
|
/// Initialises a stand-alone variable with optional initial value.
|
|
///
|
|
/// @param default_value Value the variable should have at startup.
|
|
///
|
|
AP_ParamT<T,PT> (const T initial_value = 0) :
|
|
AP_Param(),
|
|
_value(initial_value)
|
|
{
|
|
}
|
|
|
|
static const ap_var_type vtype = PT;
|
|
|
|
/// Value getter
|
|
///
|
|
T get(void) const {
|
|
return _value;
|
|
}
|
|
|
|
/// Value setter
|
|
///
|
|
void set(T v) {
|
|
_value = v;
|
|
}
|
|
|
|
/// Combined set and save
|
|
///
|
|
bool set_and_save(T v) {
|
|
set(v);
|
|
return save();
|
|
}
|
|
|
|
/// Combined set and save, but only does the save if the value if
|
|
/// different from the current ram value, thus saving us a
|
|
/// scan(). This should only be used where we have not set() the
|
|
/// value separately, as otherwise the value in EEPROM won't be
|
|
/// updated correctly.
|
|
bool set_and_save_ifchanged(T v) {
|
|
if (v == _value) {
|
|
return true;
|
|
}
|
|
set(v);
|
|
return save();
|
|
}
|
|
|
|
/// Conversion to T returns a reference to the value.
|
|
///
|
|
/// This allows the class to be used in many situations where the value would be legal.
|
|
///
|
|
operator T &() {
|
|
return _value;
|
|
}
|
|
|
|
/// Copy assignment from self does nothing.
|
|
///
|
|
AP_ParamT<T,PT>& operator=(AP_ParamT<T,PT>& v) {
|
|
return v;
|
|
}
|
|
|
|
/// Copy assignment from T is equivalent to ::set.
|
|
///
|
|
AP_ParamT<T,PT>& operator=(T v) {
|
|
_value = v;
|
|
return *this;
|
|
}
|
|
|
|
/// AP_ParamT types can implement AP_Param::cast_to_float
|
|
///
|
|
float cast_to_float(void) {
|
|
return (float)_value;
|
|
}
|
|
|
|
protected:
|
|
T _value;
|
|
};
|
|
|
|
|
|
/// Template class for non-scalar variables.
|
|
///
|
|
/// Objects of this type have a value, and can be treated in many ways as though they
|
|
/// were the value.
|
|
///
|
|
/// @tparam T The scalar type of the variable
|
|
/// @tparam PT AP_PARAM_* type
|
|
///
|
|
template<typename T, ap_var_type PT>
|
|
class AP_ParamV : public AP_Param
|
|
{
|
|
public:
|
|
static const ap_var_type vtype = PT;
|
|
|
|
/// Value getter
|
|
///
|
|
T get(void) const {
|
|
return _value;
|
|
}
|
|
|
|
/// Value setter
|
|
///
|
|
void set(T v) {
|
|
_value = v;
|
|
}
|
|
|
|
/// Combined set and save
|
|
///
|
|
bool set_and_save(T v) {
|
|
set(v);
|
|
return save();
|
|
}
|
|
|
|
/// Conversion to T returns a reference to the value.
|
|
///
|
|
/// This allows the class to be used in many situations where the value would be legal.
|
|
///
|
|
operator T &() {
|
|
return _value;
|
|
}
|
|
|
|
/// Copy assignment from self does nothing.
|
|
///
|
|
AP_ParamV<T,PT>& operator=(AP_ParamV<T,PT>& v) {
|
|
return v;
|
|
}
|
|
|
|
/// Copy assignment from T is equivalent to ::set.
|
|
///
|
|
AP_ParamV<T,PT>& operator=(T v) {
|
|
_value = v;
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
T _value;
|
|
};
|
|
|
|
|
|
/// Template class for array variables.
|
|
///
|
|
/// Objects created using this template behave like arrays of the type T,
|
|
/// but are stored like single variables.
|
|
///
|
|
/// @tparam T The scalar type of the variable
|
|
/// @tparam N number of elements
|
|
/// @tparam PT the AP_PARAM_* type
|
|
///
|
|
template<typename T, uint8_t N, ap_var_type PT>
|
|
class AP_ParamA : public AP_Param
|
|
{
|
|
public:
|
|
static const ap_var_type vtype = PT;
|
|
|
|
/// Array operator accesses members.
|
|
///
|
|
/// @note It would be nice to range-check i here, but then what would we return?
|
|
///
|
|
T &operator [](uint8_t i) {
|
|
return _value[i];
|
|
}
|
|
|
|
/// Value getter
|
|
///
|
|
/// @note Returns zero for index values out of range.
|
|
///
|
|
T get(uint8_t i) const {
|
|
if (i < N) {
|
|
return _value[i];
|
|
} else {
|
|
return (T)0;
|
|
}
|
|
}
|
|
|
|
/// Value setter
|
|
///
|
|
/// @note Attempts to set an index out of range are discarded.
|
|
///
|
|
void set(uint8_t i, T v) {
|
|
if (i < N) {
|
|
_value[i] = v;
|
|
}
|
|
}
|
|
|
|
/// Copy assignment from self does nothing.
|
|
///
|
|
AP_ParamA<T,N,PT>& operator=(AP_ParamA<T,N,PT>& v) {
|
|
return v;
|
|
}
|
|
|
|
protected:
|
|
T _value[N];
|
|
};
|
|
|
|
|
|
|
|
/// Convenience macro for defining instances of the AP_ParamT template.
|
|
///
|
|
// declare a scalar type
|
|
// _t is the base type
|
|
// _suffix is the suffix on the AP_* type name
|
|
// _pt is the enum ap_var_type type
|
|
#define AP_PARAMDEF(_t, _suffix, _pt) typedef AP_ParamT<_t, _pt> AP_##_suffix;
|
|
AP_PARAMDEF(float, Float, AP_PARAM_FLOAT); // defines AP_Float
|
|
AP_PARAMDEF(int8_t, Int8, AP_PARAM_INT8); // defines AP_Int8
|
|
AP_PARAMDEF(int16_t, Int16, AP_PARAM_INT16); // defines AP_Int16
|
|
AP_PARAMDEF(int32_t, Int32, AP_PARAM_INT32); // defines AP_Int32
|
|
|
|
// declare an array type
|
|
// _t is the base type
|
|
// _suffix is the suffix on the AP_* type name
|
|
// _size is the size of the array
|
|
// _pt is the enum ap_var_type type
|
|
#define AP_PARAMDEFA(_t, _suffix, _size, _pt) typedef AP_ParamA<_t, _size, _pt> AP_##_suffix;
|
|
AP_PARAMDEFA(float, Vector6f, 6, AP_PARAM_VECTOR6F);
|
|
|
|
// declare a non-scalar type
|
|
// this is used in AP_Math.h
|
|
// _t is the base type
|
|
// _suffix is the suffix on the AP_* type name
|
|
// _pt is the enum ap_var_type type
|
|
#define AP_PARAMDEFV(_t, _suffix, _pt) typedef AP_ParamV<_t, _pt> AP_##_suffix;
|
|
|
|
/// Rely on built in casting for other variable types
|
|
/// to minimize template creation and save memory
|
|
#define AP_Uint8 AP_Int8
|
|
#define AP_Uint16 AP_Int16
|
|
#define AP_Uint32 AP_Int32
|
|
#define AP_Bool AP_Int8
|
|
|
|
#endif // AP_PARAM_H
|