ardupilot/Tools/AP_Bootloader/bl_protocol.cpp

1234 lines
36 KiB
C++

/*
ArduPilot bootloader protocol
based on bl.c from https://github.com/PX4/Bootloader.
Ported to ChibiOS for ArduPilot by Andrew Tridgell
*/
/****************************************************************************
*
* Copyright (c) 2012-2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Math/crc.h>
#include "ch.h"
#include "hal.h"
#include "hwdef.h"
#include "bl_protocol.h"
#include "support.h"
#include "can.h"
#include <AP_HAL_ChibiOS/hwdef/common/watchdog.h>
#if EXT_FLASH_SIZE_MB
#include <AP_FlashIface/AP_FlashIface_JEDEC.h>
#endif
#include <AP_CheckFirmware/AP_CheckFirmware.h>
// #pragma GCC optimize("O0")
// bootloader flash update protocol.
//
// Command format:
//
// <opcode>[<command_data>]<EOC>
//
// Reply format:
//
// [<reply_data>]<INSYNC><status>
//
// The <opcode> and <status> values come from the PROTO_ defines below,
// the <*_data> fields is described only for opcodes that transfer data;
// in all other cases the field is omitted.
//
// Expected workflow (protocol 3) is:
//
// GET_SYNC verify that the board is present
// GET_DEVICE determine which board (select firmware to upload)
// CHIP_ERASE erase the program area and reset address counter
// loop:
// PROG_MULTI program bytes
// GET_CRC verify CRC of entire flashable area
// RESET finalise flash programming, reset chip and starts application
//
#define BL_PROTOCOL_VERSION 5 // The revision of the bootloader protocol
// protocol bytes
#define PROTO_INSYNC 0x12 // 'in sync' byte sent before status
#define PROTO_EOC 0x20 // end of command
// Reply bytes
#define PROTO_OK 0x10 // INSYNC/OK - 'ok' response
#define PROTO_FAILED 0x11 // INSYNC/FAILED - 'fail' response
#define PROTO_INVALID 0x13 // INSYNC/INVALID - 'invalid' response for bad commands
#define PROTO_BAD_SILICON_REV 0x14 // On the F4 series there is an issue with < Rev 3 silicon
// see https://pixhawk.org/help/errata
// Command bytes
#define PROTO_GET_SYNC 0x21 // NOP for re-establishing sync
#define PROTO_GET_DEVICE 0x22 // get device ID bytes
#define PROTO_CHIP_ERASE 0x23 // erase program area and reset program address
#define PROTO_PROG_MULTI 0x27 // write bytes at program address and increment
#define PROTO_READ_MULTI 0x28 // read bytes at address and increment
#define PROTO_GET_CRC 0x29 // compute & return a CRC
#define PROTO_GET_OTP 0x2a // read a byte from OTP at the given address
#define PROTO_GET_SN 0x2b // read a word from UDID area ( Serial) at the given address
#define PROTO_GET_CHIP 0x2c // read chip version (MCU IDCODE)
#define PROTO_SET_DELAY 0x2d // set minimum boot delay
#define PROTO_GET_CHIP_DES 0x2e // read chip version In ASCII
#define PROTO_BOOT 0x30 // boot the application
#define PROTO_DEBUG 0x31 // emit debug information - format not defined
#define PROTO_SET_BAUD 0x33 // baud rate on uart
// External Flash programming
#define PROTO_EXTF_ERASE 0x34 // Erase sectors from external flash
#define PROTO_EXTF_PROG_MULTI 0x35 // write bytes at external flash program address and increment
#define PROTO_EXTF_READ_MULTI 0x36 // read bytes at address and increment
#define PROTO_EXTF_GET_CRC 0x37 // compute & return a CRC of data in external flash
#define PROTO_CHIP_FULL_ERASE 0x40 // erase program area and reset program address, skip any flash wear optimization and force an erase
#define PROTO_PROG_MULTI_MAX 64 // maximum PROG_MULTI size
#define PROTO_READ_MULTI_MAX 255 // size of the size field
/* argument values for PROTO_GET_DEVICE */
#define PROTO_DEVICE_BL_REV 1 // bootloader revision
#define PROTO_DEVICE_BOARD_ID 2 // board ID
#define PROTO_DEVICE_BOARD_REV 3 // board revision
#define PROTO_DEVICE_FW_SIZE 4 // size of flashable area
#define PROTO_DEVICE_VEC_AREA 5 // contents of reserved vectors 7-10
#define PROTO_DEVICE_EXTF_SIZE 6 // size of available external flash
// all except PROTO_DEVICE_VEC_AREA and PROTO_DEVICE_BOARD_REV should be done
#define CHECK_GET_DEVICE_FINISHED(x) ((x & (0xB)) == 0xB)
// interrupt vector table for STM32
#define SCB_VTOR 0xE000ED08
static virtual_timer_t systick_vt;
/*
millisecond timer array
*/
#define NTIMERS 2
#define TIMER_BL_WAIT 0
#define TIMER_LED 1
static enum led_state led_state;
volatile unsigned timer[NTIMERS];
// keep back 32 bytes at the front of flash. This is long enough to allow for aligned
// access on STM32H7
#define RESERVE_LEAD_WORDS 8
#if EXT_FLASH_SIZE_MB
extern AP_FlashIface_JEDEC ext_flash;
#endif
#ifndef BOOT_FROM_EXT_FLASH
#define BOOT_FROM_EXT_FLASH 0
#endif
/*
1ms timer tick callback
*/
static void sys_tick_handler(virtual_timer_t* vt, void *ctx)
{
chSysLockFromISR();
chVTSetI(&systick_vt, chTimeMS2I(1), sys_tick_handler, nullptr);
chSysUnlockFromISR();
uint8_t i;
for (i = 0; i < NTIMERS; i++)
if (timer[i] > 0) {
timer[i]--;
}
if ((led_state == LED_BLINK) && (timer[TIMER_LED] == 0)) {
led_toggle(LED_BOOTLOADER);
timer[TIMER_LED] = 50;
}
if ((led_state == LED_BAD_FW) && (timer[TIMER_LED] == 0)) {
led_toggle(LED_BOOTLOADER);
timer[TIMER_LED] = 1000;
}
}
static void delay(unsigned msec)
{
chThdSleep(chTimeMS2I(msec));
}
void
led_set(enum led_state state)
{
led_state = state;
switch (state) {
case LED_OFF:
led_off(LED_BOOTLOADER);
break;
case LED_ON:
led_on(LED_BOOTLOADER);
break;
case LED_BLINK:
/* restart the blink state machine ASAP */
timer[TIMER_LED] = 0;
break;
case LED_BAD_FW:
timer[TIMER_LED] = 0;
break;
}
}
static void
do_jump(uint32_t stacktop, uint32_t entrypoint)
{
#if defined(STM32F7) || defined(STM32H7)
// disable caches on F7 before starting program
__DSB();
__ISB();
SCB_DisableDCache();
SCB_DisableICache();
#endif
chSysLock();
// we set sp as well as msp to avoid an issue with loading NuttX
asm volatile(
"mov sp, %0 \n"
"msr msp, %0 \n"
"bx %1 \n"
: : "r"(stacktop), "r"(entrypoint) :);
}
#ifndef APP_START_ADDRESS
#define APP_START_ADDRESS (FLASH_LOAD_ADDRESS + (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB)*1024U)
#endif
#if !defined(STM32_OTG2_IS_OTG1)
#define STM32_OTG2_IS_OTG1 0
#endif
void
jump_to_app()
{
const uint32_t *app_base = (const uint32_t *)(APP_START_ADDRESS);
#if AP_CHECK_FIRMWARE_ENABLED
const auto ok = check_good_firmware();
if (ok != check_fw_result_t::CHECK_FW_OK) {
// bad firmware, don't try and boot
led_set(LED_BAD_FW);
return;
}
#endif
// If we have QSPI chip start it
#if EXT_FLASH_SIZE_MB
uint8_t* ext_flash_start_addr;
if (!ext_flash.start_xip_mode((void**)&ext_flash_start_addr)) {
return;
}
#endif
/*
* We hold back the programming of the lead words until the upload
* is marked complete by the host. So if they are not 0xffffffff,
* we should try booting it.
*/
for (uint8_t i=0; i<RESERVE_LEAD_WORDS; i++) {
if (app_base[i] == 0xffffffff) {
goto exit;
}
}
/*
* The second word of the app is the entrypoint; it must point within the
* flash area (or we have a bad flash).
*/
if (app_base[1] < APP_START_ADDRESS) {
goto exit;
}
#if BOOT_FROM_EXT_FLASH
if (app_base[1] >= (APP_START_ADDRESS + board_info.extf_size)) {
goto exit;
}
#else
if (app_base[1] >= (APP_START_ADDRESS + board_info.fw_size)) {
goto exit;
}
#endif
#if HAL_USE_CAN == TRUE || HAL_NUM_CAN_IFACES
// for CAN firmware we start the watchdog before we run the
// application code, to ensure we catch a bad firmare. If we get a
// watchdog reset and the firmware hasn't changed the RTC flag to
// indicate that it has been running OK for 30s then we will stay
// in bootloader
#ifndef DISABLE_WATCHDOG
stm32_watchdog_init();
#endif
stm32_watchdog_pat();
#endif
flash_set_keep_unlocked(false);
led_set(LED_OFF);
// resetting the clocks is needed for loading NuttX
#if defined(STM32H7)
rccDisableAPB1L(~0);
rccDisableAPB1H(~0);
#elif defined(STM32G4)
rccDisableAPB1R1(~0);
rccDisableAPB1R2(~0);
#elif defined(STM32L4)
rccDisableAPB1R1(~0);
rccDisableAPB1R2(~0);
#elif defined(STM32L4PLUS)
rccDisableAPB1R1(~0);
rccDisableAPB1R2(~0);
#else
rccDisableAPB1(~0);
#endif
rccDisableAPB2(~0);
#if HAL_USE_SERIAL_USB == TRUE
#if !STM32_OTG2_IS_OTG1
rccResetOTG_FS();
#endif
#if defined(rccResetOTG_HS)
rccResetOTG_HS();
#endif
#endif
// disable all interrupt sources
port_disable();
/* switch exception handlers to the application */
*(volatile uint32_t *)SCB_VTOR = APP_START_ADDRESS;
/* extract the stack and entrypoint from the app vector table and go */
do_jump(app_base[0], app_base[1]);
exit:
#if EXT_FLASH_SIZE_MB
ext_flash.stop_xip_mode();
#endif
return;
}
static void
sync_response(void)
{
uint8_t data[] = {
PROTO_INSYNC, // "in sync"
PROTO_OK // "OK"
};
cout(data, sizeof(data));
}
static void
invalid_response(void)
{
uint8_t data[] = {
PROTO_INSYNC, // "in sync"
PROTO_INVALID // "invalid command"
};
cout(data, sizeof(data));
}
static void
failure_response(void)
{
uint8_t data[] = {
PROTO_INSYNC, // "in sync"
PROTO_FAILED // "command failed"
};
cout(data, sizeof(data));
}
/**
* Function to wait for EOC
*
* @param timeout length of time in ms to wait for the EOC to be received
* @return true if the EOC is returned within the timeout perio, else false
*/
inline static bool
wait_for_eoc(unsigned timeout)
{
return cin(timeout) == PROTO_EOC;
}
static void
cout_word(uint32_t val)
{
cout((uint8_t *)&val, 4);
}
#define TEST_FLASH 0
#if TEST_FLASH
static void test_flash()
{
uint32_t loop = 1;
bool init_done = false;
while (true) {
uint32_t addr = 0;
uint32_t page = 0;
while (true) {
uint32_t v[8];
for (uint8_t i=0; i<8; i++) {
v[i] = (page<<16) + loop;
}
if (flash_func_sector_size(page) == 0) {
continue;
}
uint32_t num_writes = flash_func_sector_size(page) / sizeof(v);
uprintf("page %u size %u addr=0x%08x v=0x%08x\n",
page, flash_func_sector_size(page), addr, v[0]); delay(10);
if (init_done) {
for (uint32_t j=0; j<flash_func_sector_size(page)/4; j++) {
uint32_t v1 = (page<<16) + (loop-1);
uint32_t v2 = flash_func_read_word(addr+j*4);
if (v2 != v1) {
uprintf("read error at 0x%08x v=0x%08x v2=0x%08x\n", addr+j*4, v1, v2);
break;
}
}
}
if (!flash_func_erase_sector(page)) {
uprintf("erase of %u failed\n", page);
}
for (uint32_t j=0; j<num_writes; j++) {
if (!flash_func_write_words(addr+j*sizeof(v), v, ARRAY_SIZE(v))) {
uprintf("write failed at 0x%08x\n", addr+j*sizeof(v));
break;
}
}
addr += flash_func_sector_size(page);
page++;
if (flash_func_sector_size(page) == 0) {
break;
}
}
init_done = true;
delay(1000);
loop++;
}
}
#endif
void
bootloader(unsigned timeout)
{
#if TEST_FLASH
test_flash();
#endif
uint32_t address = board_info.fw_size; /* force erase before upload will work */
#if EXT_FLASH_SIZE_MB
uint32_t extf_address = board_info.extf_size; /* force erase before upload will work */
#endif
uint32_t read_address = 0;
uint32_t first_words[RESERVE_LEAD_WORDS];
bool done_sync = false;
uint8_t done_get_device_flags = 0;
bool done_erase = false;
static bool done_timer_init;
unsigned original_timeout = timeout;
memset(first_words, 0xFF, sizeof(first_words));
if (!done_timer_init) {
done_timer_init = true;
chVTObjectInit(&systick_vt);
chVTSet(&systick_vt, chTimeMS2I(1), sys_tick_handler, nullptr);
}
/* if we are working with a timeout, start it running */
if (timeout) {
timer[TIMER_BL_WAIT] = timeout;
}
/* make the LED blink while we are idle */
// ensure we don't override BAD FW LED
if (led_state != LED_BAD_FW) {
led_set(LED_BLINK);
}
while (true) {
volatile int c;
int arg;
static union {
uint8_t c[256];
uint32_t w[64];
} flash_buffer;
// Wait for a command byte
led_off(LED_ACTIVITY);
do {
/* if we have a timeout and the timer has expired, return now */
if (timeout && !timer[TIMER_BL_WAIT]) {
return;
}
/* try to get a byte from the host */
c = cin(0);
#if HAL_USE_CAN == TRUE || HAL_NUM_CAN_IFACES
if (c < 0) {
can_update();
}
#endif
} while (c < 0);
led_on(LED_ACTIVITY);
// handle the command byte
switch (c) {
// sync
//
// command: GET_SYNC/EOC
// reply: INSYNC/OK
//
case PROTO_GET_SYNC:
/* expect EOC */
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
done_sync = true;
break;
// get device info
//
// command: GET_DEVICE/<arg:1>/EOC
// BL_REV reply: <revision:4>/INSYNC/EOC
// BOARD_ID reply: <board type:4>/INSYNC/EOC
// BOARD_REV reply: <board rev:4>/INSYNC/EOC
// FW_SIZE reply: <firmware size:4>/INSYNC/EOC
// VEC_AREA reply <vectors 7-10:16>/INSYNC/EOC
// bad arg reply: INSYNC/INVALID
//
case PROTO_GET_DEVICE:
/* expect arg then EOC */
arg = cin(1000);
if (arg < 0) {
goto cmd_bad;
}
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
// reset read pointer
read_address = 0;
switch (arg) {
case PROTO_DEVICE_BL_REV: {
uint32_t bl_proto_rev = BL_PROTOCOL_VERSION;
cout((uint8_t *)&bl_proto_rev, sizeof(bl_proto_rev));
break;
}
case PROTO_DEVICE_BOARD_ID:
cout((uint8_t *)&board_info.board_type, sizeof(board_info.board_type));
break;
case PROTO_DEVICE_BOARD_REV:
cout((uint8_t *)&board_info.board_rev, sizeof(board_info.board_rev));
break;
case PROTO_DEVICE_FW_SIZE:
cout((uint8_t *)&board_info.fw_size, sizeof(board_info.fw_size));
break;
case PROTO_DEVICE_VEC_AREA:
for (unsigned p = 7; p <= 10; p++) {
uint32_t bytes = flash_func_read_word(p * 4);
cout((uint8_t *)&bytes, sizeof(bytes));
}
break;
case PROTO_DEVICE_EXTF_SIZE:
cout((uint8_t *)&board_info.extf_size, sizeof(board_info.extf_size));
break;
default:
goto cmd_bad;
}
done_get_device_flags |= (1<<(arg-1)); // set the flags for use when resetting timeout
break;
// erase and prepare for programming
//
// command: ERASE/EOC
// success reply: INSYNC/OK
// erase failure: INSYNC/FAILURE
//
case PROTO_CHIP_ERASE:
#if defined(STM32F7) || defined(STM32H7)
case PROTO_CHIP_FULL_ERASE:
#endif
if (!done_sync || !CHECK_GET_DEVICE_FINISHED(done_get_device_flags)) {
// lower chance of random data on a uart triggering erase
goto cmd_bad;
}
/* expect EOC */
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
// once erase is done there is no going back, set timeout
// to zero
done_erase = true;
timeout = 0;
flash_set_keep_unlocked(true);
// clear the bootloader LED while erasing - it stops blinking at random
// and that's confusing
led_set(LED_OFF);
// erase all sectors
for (uint16_t i = 0; flash_func_sector_size(i) != 0; i++) {
#if defined(STM32F7) || defined(STM32H7)
if (!flash_func_erase_sector(i, c == PROTO_CHIP_FULL_ERASE)) {
#else
if (!flash_func_erase_sector(i)) {
#endif
goto cmd_fail;
}
}
// enable the LED while verifying the erase
led_set(LED_ON);
// verify the erase
for (address = 0; address < board_info.fw_size; address += 4) {
if (flash_func_read_word(address) != 0xffffffff) {
goto cmd_fail;
}
}
address = 0;
// resume blinking
led_set(LED_BLINK);
break;
// program data from start of the flash
//
// command: EXTF_ERASE/<len:4>/EOC
// success reply: INSYNC/OK
// invalid reply: INSYNC/INVALID
// readback failure: INSYNC/FAILURE
//
case PROTO_EXTF_ERASE:
#if EXT_FLASH_SIZE_MB
{
if (!done_sync || !CHECK_GET_DEVICE_FINISHED(done_get_device_flags)) {
// lower chance of random data on a uart triggering erase
goto cmd_bad;
}
uint32_t cmd_erase_bytes;
if (cin_word(&cmd_erase_bytes, 100)) {
goto cmd_bad;
}
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
uint32_t erased_bytes = 0;
uint32_t sector_number = EXT_FLASH_RESERVE_START_KB * 1024 / ext_flash.get_sector_size();
uint8_t pct_done = 0;
if (cmd_erase_bytes > (ext_flash.get_sector_size() * ext_flash.get_sector_count())) {
uprintf("Requested to erase more than we can\n");
goto cmd_bad;
}
uprintf("Erase Command Received\n");
sync_response();
cout(&pct_done, sizeof(pct_done));
// Flash all sectors that encompass the erase_bytes
while (erased_bytes < cmd_erase_bytes) {
uint32_t delay_ms = 0, timeout_ms = 0;
if (!ext_flash.start_sector_erase(sector_number, delay_ms, timeout_ms)) {
goto cmd_fail;
}
uint32_t next_check_ms = AP_HAL::millis() + delay_ms;
while (true) {
cout(&pct_done, sizeof(pct_done));
if (AP_HAL::millis() > next_check_ms) {
if (!ext_flash.is_device_busy()) {
pct_done = erased_bytes*100/cmd_erase_bytes;
uprintf("PCT DONE: %d\n", pct_done);
break;
}
if ((AP_HAL::millis() + timeout_ms) > next_check_ms) {
// We are out of time, return error
goto cmd_fail;
}
next_check_ms = AP_HAL::millis()+delay_ms;
}
chThdSleep(chTimeMS2I(delay_ms));
}
erased_bytes += ext_flash.get_sector_size();
sector_number++;
}
pct_done = 100;
extf_address = 0;
cout(&pct_done, sizeof(pct_done));
}
#else
goto cmd_bad;
#endif // EXT_FLASH_SIZE_MB
break;
// program bytes at current external flash address
//
// command: PROG_MULTI/<len:1>/<data:len>/EOC
// success reply: INSYNC/OK
// invalid reply: INSYNC/INVALID
// readback failure: INSYNC/FAILURE
//
case PROTO_EXTF_PROG_MULTI:
{
#if EXT_FLASH_SIZE_MB
if (!done_sync || !CHECK_GET_DEVICE_FINISHED(done_get_device_flags)) {
// lower chance of random data on a uart triggering erase
goto cmd_bad;
}
// expect count
led_set(LED_OFF);
arg = cin(50);
if (arg < 0) {
goto cmd_bad;
}
if ((extf_address + arg) > board_info.extf_size) {
goto cmd_bad;
}
if (arg > sizeof(flash_buffer.c)) {
goto cmd_bad;
}
for (int i = 0; i < arg; i++) {
c = cin(1000);
if (c < 0) {
goto cmd_bad;
}
flash_buffer.c[i] = c;
}
if (!wait_for_eoc(200)) {
goto cmd_bad;
}
uint32_t offset = 0;
uint32_t size = arg;
#if BOOT_FROM_EXT_FLASH
// save the first words and don't program it until everything else is done
if (extf_address < sizeof(first_words)) {
uint8_t n = MIN(sizeof(first_words)-extf_address, arg);
memcpy(&first_words[extf_address/4], &flash_buffer.w[0], n);
// replace first words with 1 bits we can overwrite later
memset(&flash_buffer.w[0], 0xFF, n);
}
#endif
uint32_t programming;
uint32_t delay_us = 0, timeout_us = 0;
uint64_t start_time_us;
while (true) {
if (size == 0) {
extf_address += arg;
break;
}
if (!ext_flash.start_program_offset(extf_address+offset+EXT_FLASH_RESERVE_START_KB*1024,
&flash_buffer.c[offset], size, programming, delay_us, timeout_us)) {
// uprintf("ext flash write command failed\n");
goto cmd_fail;
}
start_time_us = AP_HAL::micros64();
// prepare for next run
offset += programming;
size -= programming;
while (true) {
if (AP_HAL::micros64() > (start_time_us+delay_us)) {
if (!ext_flash.is_device_busy()) {
// uprintf("flash program Successful, elapsed %ld us\n", uint32_t(AP_HAL::micros64() - start_time_us));
break;
} else {
// uprintf("Typical flash program time reached, Still Busy?!\n");
}
}
}
}
#endif
break;
}
// program bytes at current address
//
// command: PROG_MULTI/<len:1>/<data:len>/EOC
// success reply: INSYNC/OK
// invalid reply: INSYNC/INVALID
// readback failure: INSYNC/FAILURE
//
case PROTO_PROG_MULTI: // program bytes
if (!done_sync || !CHECK_GET_DEVICE_FINISHED(done_get_device_flags)) {
// lower chance of random data on a uart triggering erase
goto cmd_bad;
}
// expect count
led_set(LED_OFF);
arg = cin(50);
if (arg < 0) {
goto cmd_bad;
}
// sanity-check arguments
if (arg % 4) {
goto cmd_bad;
}
if ((address + arg) > board_info.fw_size) {
goto cmd_bad;
}
if (arg > sizeof(flash_buffer.c)) {
goto cmd_bad;
}
for (int i = 0; i < arg; i++) {
c = cin(1000);
if (c < 0) {
goto cmd_bad;
}
flash_buffer.c[i] = c;
}
if (!wait_for_eoc(200)) {
goto cmd_bad;
}
// save the first words and don't program it until everything else is done
#if !BOOT_FROM_EXT_FLASH
if (address < sizeof(first_words)) {
uint8_t n = MIN(sizeof(first_words)-address, arg);
memcpy(&first_words[address/4], &flash_buffer.w[0], n);
// replace first words with 1 bits we can overwrite later
memset(&flash_buffer.w[0], 0xFF, n);
}
#endif
arg /= 4;
// program the words
if (!flash_write_buffer(address, flash_buffer.w, arg)) {
goto cmd_fail;
}
address += arg * 4;
break;
// fetch CRC of the entire flash area
//
// command: GET_CRC/EOC
// reply: <crc:4>/INSYNC/OK
//
case PROTO_GET_CRC: {
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
if (!flash_write_flush()) {
goto cmd_bad;
}
// compute CRC of the programmed area
uint32_t sum = 0;
for (unsigned p = 0; p < board_info.fw_size; p += 4) {
uint32_t bytes;
#if !BOOT_FROM_EXT_FLASH
if (p < sizeof(first_words) && first_words[0] != 0xFFFFFFFF) {
bytes = first_words[p/4];
} else
#endif
{
bytes = flash_func_read_word(p);
}
sum = crc32_small(sum, (uint8_t *)&bytes, sizeof(bytes));
}
cout_word(sum);
break;
}
// fetch CRC of the external flash area
//
// command: EXTF_GET_CRC/<len:4>/EOC
// reply: <crc:4>/INSYNC/OK
//
case PROTO_EXTF_GET_CRC: {
#if EXT_FLASH_SIZE_MB
// expect EOC
uint32_t cmd_verify_bytes;
if (cin_word(&cmd_verify_bytes, 100)) {
goto cmd_bad;
}
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
// compute CRC of the programmed area
uint32_t sum = 0;
uint8_t rembytes = cmd_verify_bytes % 4;
for (unsigned p = 0; p < (cmd_verify_bytes-rembytes); p+=4) {
uint32_t bytes;
#if BOOT_FROM_EXT_FLASH
if (p < sizeof(first_words) && first_words[0] != 0xFFFFFFFF) {
bytes = first_words[p/4];
} else
#endif
{
ext_flash.read(p+EXT_FLASH_RESERVE_START_KB*1024, (uint8_t *)&bytes, sizeof(bytes));
}
sum = crc32_small(sum, (uint8_t *)&bytes, sizeof(bytes));
}
if (rembytes) {
uint8_t bytes[3];
ext_flash.read(EXT_FLASH_RESERVE_START_KB*1024+cmd_verify_bytes-rembytes, bytes, rembytes);
sum = crc32_small(sum, bytes, rembytes);
}
cout_word(sum);
break;
#endif
}
// read a word from the OTP
//
// command: GET_OTP/<addr:4>/EOC
// reply: <value:4>/INSYNC/OK
case PROTO_GET_OTP:
// expect argument
{
uint32_t index = 0;
if (cin_word(&index, 100)) {
goto cmd_bad;
}
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
cout_word(flash_func_read_otp(index));
}
break;
// read the SN from the UDID
//
// command: GET_SN/<addr:4>/EOC
// reply: <value:4>/INSYNC/OK
case PROTO_GET_SN:
// expect argument
{
uint32_t index = 0;
if (cin_word(&index, 100)) {
goto cmd_bad;
}
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
cout_word(flash_func_read_sn(index));
}
break;
// read the chip ID code
//
// command: GET_CHIP/EOC
// reply: <value:4>/INSYNC/OK
case PROTO_GET_CHIP: {
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
cout_word(get_mcu_id());
}
break;
// read the chip description
//
// command: GET_CHIP_DES/EOC
// reply: <value:4>/INSYNC/OK
case PROTO_GET_CHIP_DES: {
uint8_t buffer[MAX_DES_LENGTH];
unsigned len = MAX_DES_LENGTH;
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
len = get_mcu_desc(len, buffer);
cout_word(len);
cout(buffer, len);
}
break;
#ifdef BOOT_DELAY_ADDRESS
case PROTO_SET_DELAY: {
/*
Allow for the bootloader to setup a
boot delay signature which tells the
board to delay for at least a
specified number of seconds on boot.
*/
int v = cin(100);
if (v < 0) {
goto cmd_bad;
}
uint8_t boot_delay = v & 0xFF;
if (boot_delay > BOOT_DELAY_MAX) {
goto cmd_bad;
}
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
uint32_t sig1 = flash_func_read_word(BOOT_DELAY_ADDRESS);
uint32_t sig2 = flash_func_read_word(BOOT_DELAY_ADDRESS + 4);
if (sig1 != BOOT_DELAY_SIGNATURE1 ||
sig2 != BOOT_DELAY_SIGNATURE2) {
goto cmd_bad;
}
uint32_t value = (BOOT_DELAY_SIGNATURE1 & 0xFFFFFF00) | boot_delay;
flash_func_write_word(BOOT_DELAY_ADDRESS, value);
if (flash_func_read_word(BOOT_DELAY_ADDRESS) != value) {
goto cmd_fail;
}
}
break;
#endif
case PROTO_READ_MULTI: {
arg = cin(50);
if (arg < 0) {
goto cmd_bad;
}
if (arg % 4) {
goto cmd_bad;
}
if ((read_address + arg) > board_info.fw_size) {
goto cmd_bad;
}
// expect EOC
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
arg /= 4;
while (arg-- > 0) {
cout_word(flash_func_read_word(read_address));
read_address += 4;
}
break;
}
// finalise programming and boot the system
//
// command: BOOT/EOC
// reply: INSYNC/OK
//
case PROTO_BOOT:
// expect EOC
if (!wait_for_eoc(1000)) {
goto cmd_bad;
}
if (!flash_write_flush()) {
goto cmd_fail;
}
// program the deferred first word
if (first_words[0] != 0xffffffff) {
#if !BOOT_FROM_EXT_FLASH
if (!flash_write_buffer(0, first_words, RESERVE_LEAD_WORDS)) {
goto cmd_fail;
}
#else
uint32_t programming;
uint32_t delay_us;
uint32_t timeout_us;
if (!ext_flash.start_program_offset(EXT_FLASH_RESERVE_START_KB*1024, (const uint8_t*)first_words, sizeof(first_words), programming, delay_us, timeout_us)) {
// uprintf("ext flash write command failed\n");
goto cmd_fail;
}
uint64_t start_time_us = AP_HAL::micros64();
while (true) {
if (AP_HAL::micros64() > (start_time_us+delay_us)) {
if (!ext_flash.is_device_busy()) {
// uprintf("flash program Successful, elapsed %ld us\n", uint32_t(AP_HAL::micros64() - start_time_us));
break;
} else {
// uprintf("Typical flash program time reached, Still Busy?!\n");
}
}
}
#endif
// revert in case the flash was bad...
memset(first_words, 0xff, sizeof(first_words));
}
// send a sync and wait for it to be collected
sync_response();
delay(100);
// quiesce and jump to the app
return;
case PROTO_DEBUG:
// XXX reserved for ad-hoc debugging as required
break;
case PROTO_SET_BAUD: {
if (!done_sync || !CHECK_GET_DEVICE_FINISHED(done_get_device_flags)) {
// prevent timeout going to zero on noise
goto cmd_bad;
}
/* expect arg then EOC */
uint32_t baud = 0;
if (cin_word(&baud, 100)) {
goto cmd_bad;
}
if (!wait_for_eoc(2)) {
goto cmd_bad;
}
// send the sync response for this command
sync_response();
delay(5);
// set the baudrate
port_setbaud(baud);
lock_bl_port();
timeout = 0;
// this is different to what every other case in this
// switch does! Most go through sync_response down the
// bottom, but we need to undertake an action after
// returning the response...
continue;
}
default:
continue;
}
// we got a good command on this port, lock to the port
lock_bl_port();
// once we get both a valid sync and valid get_device then kill
// the timeout
if (done_sync && CHECK_GET_DEVICE_FINISHED(done_get_device_flags)) {
timeout = 0;
}
// send the sync response for this command
sync_response();
continue;
cmd_bad:
// if we get a bad command it could be line noise on a
// uart. Set timeout back to original timeout so we don't get
// stuck in the bootloader
if (!done_erase) {
timeout = original_timeout;
}
// send an 'invalid' response but don't kill the timeout - could be garbage
invalid_response();
continue;
cmd_fail:
// send a 'command failed' response but don't kill the timeout - could be garbage
failure_response();
continue;
}
}