ardupilot/ArduCopter/flight_mode.cpp
2017-12-06 08:24:24 +09:00

312 lines
9.7 KiB
C++

#include "Copter.h"
/*
* High level calls to set and update flight modes logic for individual
* flight modes is in control_acro.cpp, control_stabilize.cpp, etc
*/
// set_mode - change flight mode and perform any necessary initialisation
// optional force parameter used to force the flight mode change (used only first time mode is set)
// returns true if mode was successfully set
// ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
bool Copter::set_mode(control_mode_t mode, mode_reason_t reason)
{
// boolean to record if flight mode could be set
bool success = false;
bool ignore_checks = !motors->armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
// return immediately if we are already in the desired mode
if (mode == control_mode) {
prev_control_mode = control_mode;
prev_control_mode_reason = control_mode_reason;
control_mode_reason = reason;
return true;
}
#if FRAME_CONFIG == HELI_FRAME
// do not allow helis to enter a non-manual throttle mode if the
// rotor runup is not complete
if (!ignore_checks && !mode_has_manual_throttle(mode) && !motors->rotor_runup_complete()){
goto failed;
}
#endif
// for transition, we assume no flightmode object will be used in
// the new mode, and if the transition fails we reset the
// flightmode to the previous value
Copter::FlightMode* old_flightmode = flightmode;
flightmode = nullptr;
switch (mode) {
case ACRO:
success = flightmode_acro.init(ignore_checks);
if (success) {
flightmode = &flightmode_acro;
}
break;
case STABILIZE:
success = flightmode_stabilize.init(ignore_checks);
if (success) {
flightmode = &flightmode_stabilize;
}
break;
case ALT_HOLD:
success = flightmode_althold.init(ignore_checks);
if (success) {
flightmode = &flightmode_althold;
}
break;
case AUTO:
success = flightmode_auto.init(ignore_checks);
if (success) {
flightmode = &flightmode_auto;
}
break;
case CIRCLE:
success = flightmode_circle.init(ignore_checks);
if (success) {
flightmode = &flightmode_circle;
}
break;
case LOITER:
success = flightmode_loiter.init(ignore_checks);
if (success) {
flightmode = &flightmode_loiter;
}
break;
case GUIDED:
success = flightmode_guided.init(ignore_checks);
if (success) {
flightmode = &flightmode_guided;
}
break;
case LAND:
success = flightmode_land.init(ignore_checks);
if (success) {
flightmode = &flightmode_land;
}
break;
case RTL:
success = flightmode_rtl.init(ignore_checks);
if (success) {
flightmode = &flightmode_rtl;
}
break;
case DRIFT:
success = flightmode_drift.init(ignore_checks);
if (success) {
flightmode = &flightmode_drift;
}
break;
case SPORT:
success = flightmode_sport.init(ignore_checks);
if (success) {
flightmode = &flightmode_sport;
}
break;
case FLIP:
success = flightmode_flip.init(ignore_checks);
if (success) {
flightmode = &flightmode_flip;
}
break;
#if AUTOTUNE_ENABLED == ENABLED
case AUTOTUNE:
success = flightmode_autotune.init(ignore_checks);
if (success) {
flightmode = &flightmode_autotune;
}
break;
#endif
#if POSHOLD_ENABLED == ENABLED
case POSHOLD:
success = flightmode_poshold.init(ignore_checks);
if (success) {
flightmode = &flightmode_poshold;
}
break;
#endif
case BRAKE:
success = flightmode_brake.init(ignore_checks);
if (success) {
flightmode = &flightmode_brake;
}
break;
case THROW:
success = flightmode_throw.init(ignore_checks);
if (success) {
flightmode = &flightmode_throw;
}
break;
case AVOID_ADSB:
success = flightmode_avoid_adsb.init(ignore_checks);
if (success) {
flightmode = &flightmode_avoid_adsb;
}
break;
case GUIDED_NOGPS:
success = flightmode_guided_nogps.init(ignore_checks);
if (success) {
flightmode = &flightmode_guided_nogps;
}
break;
case SMART_RTL:
success = flightmode_guided_nogps.init(ignore_checks);
if (success) {
flightmode = &flightmode_smartrtl;
}
break;
default:
success = false;
break;
}
#if FRAME_CONFIG == HELI_FRAME
failed:
#endif
// update flight mode
if (success) {
// perform any cleanup required by previous flight mode
exit_mode(control_mode, mode);
prev_control_mode = control_mode;
prev_control_mode_reason = control_mode_reason;
control_mode = mode;
control_mode_reason = reason;
DataFlash.Log_Write_Mode(control_mode, control_mode_reason);
adsb.set_is_auto_mode((mode == AUTO) || (mode == RTL) || (mode == GUIDED));
#if AC_FENCE == ENABLED
// pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover
// this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe)
// but it should be harmless to disable the fence temporarily in these situations as well
fence.manual_recovery_start();
#endif
#if FRSKY_TELEM_ENABLED == ENABLED
frsky_telemetry.update_control_mode(control_mode);
#endif
#if CAMERA == ENABLED
camera.set_is_auto_mode(control_mode == AUTO);
#endif
} else {
flightmode = old_flightmode;
// Log error that we failed to enter desired flight mode
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode);
gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed");
}
// update notify object
if (success) {
notify_flight_mode();
}
// return success or failure
return success;
}
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
// called at 100hz or more
void Copter::update_flight_mode()
{
// Update EKF speed limit - used to limit speed when we are using optical flow
ahrs.getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
flightmode->run();
}
// exit_mode - high level call to organise cleanup as a flight mode is exited
void Copter::exit_mode(control_mode_t old_control_mode, control_mode_t new_control_mode)
{
#if AUTOTUNE_ENABLED == ENABLED
if (old_control_mode == AUTOTUNE) {
flightmode_autotune.autotune_stop();
}
#endif
// stop mission when we leave auto mode
if (old_control_mode == AUTO) {
if (mission.state() == AP_Mission::MISSION_RUNNING) {
mission.stop();
}
#if MOUNT == ENABLED
camera_mount.set_mode_to_default();
#endif // MOUNT == ENABLED
}
// smooth throttle transition when switching from manual to automatic flight modes
if (mode_has_manual_throttle(old_control_mode) && !mode_has_manual_throttle(new_control_mode) && motors->armed() && !ap.land_complete) {
// this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle
set_accel_throttle_I_from_pilot_throttle();
}
// cancel any takeoffs in progress
takeoff_stop();
// call smart_rtl cleanup
if (old_control_mode == SMART_RTL) {
flightmode_smartrtl.exit();
}
#if FRAME_CONFIG == HELI_FRAME
// firmly reset the flybar passthrough to false when exiting acro mode.
if (old_control_mode == ACRO) {
attitude_control->use_flybar_passthrough(false, false);
motors->set_acro_tail(false);
}
// if we are changing from a mode that did not use manual throttle,
// stab col ramp value should be pre-loaded to the correct value to avoid a twitch
// heli_stab_col_ramp should really only be active switching between Stabilize and Acro modes
if (!mode_has_manual_throttle(old_control_mode)){
if (new_control_mode == STABILIZE){
input_manager.set_stab_col_ramp(1.0);
} else if (new_control_mode == ACRO){
input_manager.set_stab_col_ramp(0.0);
}
}
#endif //HELI_FRAME
}
// mode_has_manual_throttle - returns true if the flight mode has a manual throttle (i.e. pilot directly controls throttle)
bool Copter::mode_has_manual_throttle(control_mode_t mode)
{
switch (mode) {
case ACRO:
case STABILIZE:
return true;
default:
return false;
}
}
// notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device
void Copter::notify_flight_mode() {
AP_Notify::flags.autopilot_mode = flightmode->is_autopilot();
notify.set_flight_mode_str(flightmode->name4());
}