ardupilot/libraries/AP_InertialSensor/AP_InertialSensor.h
2012-12-20 14:51:26 +11:00

177 lines
6.2 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef __AP_INERTIAL_SENSOR_H__
#define __AP_INERTIAL_SENSOR_H__
#define GRAVITY 9.80665
// Gyro and Accelerometer calibration criteria
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0
#include <stdint.h>
#include <AP_HAL.h>
#include <AP_Math.h>
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units.
*
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
*/
class AP_InertialSensor
{
public:
AP_InertialSensor();
enum Start_style {
COLD_START = 0,
WARM_START
};
// the rate that updates will be available to the application
enum Sample_rate {
RATE_50HZ,
RATE_100HZ,
RATE_200HZ
};
/// Perform startup initialisation.
///
/// Called to initialise the state of the IMU.
///
/// For COLD_START, implementations using real sensors can assume
/// that the airframe is stationary and nominally oriented.
///
/// For WARM_START, no assumptions should be made about the
/// orientation or motion of the airframe. Calibration should be
/// as for the previous COLD_START call.
///
/// @param style The initialisation startup style.
///
virtual void init( Start_style style,
Sample_rate sample_rate,
void (*flash_leds_cb)(bool on));
/// Perform cold startup initialisation for just the accelerometers.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work.
///
virtual void init_accel(void (*flash_leds_cb)(bool on));
#if !defined( __AVR_ATmega1280__ )
// perform accelerometer calibration including providing user instructions
// and feedback
virtual bool calibrate_accel(void (*flash_leds_cb)(bool on),
AP_HAL::BetterStream *c);
#endif
/// Perform cold-start initialisation for just the gyros.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
virtual void init_gyro(void (*flash_leds_cb)(bool on));
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
Vector3f get_gyro(void) { return _gyro; }
void set_gyro(Vector3f gyro) { _gyro = gyro; }
// set gyro offsets in radians/sec
Vector3f get_gyro_offsets(void) { return _gyro_offset; }
void set_gyro_offsets(Vector3f offsets) { _gyro_offset.set(offsets); }
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
Vector3f get_accel(void) { return _accel; }
void set_accel(Vector3f accel) { _accel = accel; }
// get accel offsets in m/s/s
Vector3f get_accel_offsets() { return _accel_offset; }
void set_accel_offsets(Vector3f offsets) { _accel_offset.set(offsets); }
// get accel scale
Vector3f get_accel_scale() { return _accel_scale; }
/* Update the sensor data, so that getters are nonblocking.
* Returns a bool of whether data was updated or not.
*/
virtual bool update() = 0;
// check if the sensors have new data
virtual bool new_data_available(void) = 0;
/* Temperature, in degrees celsius, of the gyro. */
virtual float temperature() = 0;
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
virtual float get_delta_time() { return (float)get_delta_time_micros() * 1.0e-6; }
virtual uint32_t get_delta_time_micros() = 0;
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
virtual float get_gyro_drift_rate(void) = 0;
// get number of samples read from the sensors
virtual uint16_t num_samples_available() = 0;
// class level parameters
static const struct AP_Param::GroupInfo var_info[];
protected:
// sensor specific init to be overwritten by descendant classes
virtual uint16_t _init_sensor( Sample_rate sample_rate ) = 0;
// no-save implementations of accel and gyro initialisation routines
virtual void _init_accel(void (*flash_leds_cb)(bool on) = NULL);
virtual void _init_gyro(void (*flash_leds_cb)(bool on) = NULL);
#if !defined( __AVR_ATmega1280__ )
// Calibration routines borrowed from Rolfe Schmidt
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
// _calibrate_accel - perform low level accel calibration
virtual bool _calibrate_accel(Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale);
virtual void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]);
virtual void _calibrate_reset_matrices(float dS[6], float JS[6][6]);
virtual void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]);
#endif
// save parameters to eeprom
void _save_parameters();
// Most recent accelerometer reading obtained by ::update
Vector3f _accel;
// Most recent gyro reading obtained by ::update
Vector3f _gyro;
// product id
AP_Int16 _product_id;
// accelerometer scaling and offsets
AP_Vector3f _accel_scale;
AP_Vector3f _accel_offset;
AP_Vector3f _gyro_offset;
// filtering frequency (0 means default)
AP_Int8 _mpu6000_filter;
};
#include "AP_InertialSensor_Oilpan.h"
#include "AP_InertialSensor_MPU6000.h"
#include "AP_InertialSensor_Stub.h"
#endif // __AP_INERTIAL_SENSOR_H__