ardupilot/libraries/AP_AHRS/AP_AHRS_NavEKF.cpp
Andrew Tridgell eec5cd5add AP_AHRS: restore DCM attitude before update()
The DCM drift correction code uses the current attitude to calculate
error values to update its gyro drift correction. If we were using EKF
then without this patch the DCM code running as an alternative AHRS
source would be using the EKF attitude for calculating the error
value, leading to very bad gyro drift estimation
2014-10-15 11:15:33 +11:00

288 lines
7.5 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* NavEKF based AHRS (Attitude Heading Reference System) interface for
* ArduPilot
*
*/
#include <AP_HAL.h>
#include <AP_AHRS.h>
#if AP_AHRS_NAVEKF_AVAILABLE
extern const AP_HAL::HAL& hal;
// return the smoothed gyro vector corrected for drift
const Vector3f &AP_AHRS_NavEKF::get_gyro(void) const
{
if (!using_EKF()) {
return AP_AHRS_DCM::get_gyro();
}
return _gyro_estimate;
}
const Matrix3f &AP_AHRS_NavEKF::get_dcm_matrix(void) const
{
if (!using_EKF()) {
return AP_AHRS_DCM::get_dcm_matrix();
}
return _dcm_matrix;
}
const Vector3f &AP_AHRS_NavEKF::get_gyro_drift(void) const
{
if (!using_EKF()) {
return AP_AHRS_DCM::get_gyro_drift();
}
return _gyro_bias;
}
void AP_AHRS_NavEKF::update(void)
{
// we need to restore the old DCM attitude values as these are
// used internally in DCM to calculate error values for gyro drift
// correction
roll = _dcm_attitude.x;
pitch = _dcm_attitude.y;
yaw = _dcm_attitude.z;
roll_sensor = degrees(roll)*100;
pitch_sensor = degrees(pitch)*100;
yaw_sensor = degrees(yaw)*100;
AP_AHRS_DCM::update();
// keep DCM attitude available for get_secondary_attitude()
_dcm_attitude(roll, pitch, yaw);
if (!ekf_started) {
// if we have a GPS lock and more than 6 satellites, we can start the EKF
if (get_gps().status() >= AP_GPS::GPS_OK_FIX_3D && get_gps().num_sats() >= _gps_minsats) {
if (start_time_ms == 0) {
start_time_ms = hal.scheduler->millis();
}
if (hal.scheduler->millis() - start_time_ms > startup_delay_ms) {
ekf_started = true;
EKF.InitialiseFilterDynamic();
}
}
}
if (ekf_started) {
EKF.UpdateFilter();
EKF.getRotationBodyToNED(_dcm_matrix);
if (using_EKF()) {
Vector3f eulers;
EKF.getEulerAngles(eulers);
roll = eulers.x;
pitch = eulers.y;
yaw = eulers.z;
roll_sensor = degrees(roll) * 100;
pitch_sensor = degrees(pitch) * 100;
yaw_sensor = degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
update_trig();
// keep _gyro_bias for get_gyro_drift()
EKF.getGyroBias(_gyro_bias);
_gyro_bias = -_gyro_bias;
// calculate corrected gryo estimate for get_gyro()
_gyro_estimate.zero();
uint8_t healthy_count = 0;
for (uint8_t i=0; i<_ins.get_gyro_count(); i++) {
if (_ins.get_gyro_health(i)) {
_gyro_estimate += _ins.get_gyro(i);
healthy_count++;
}
}
if (healthy_count > 1) {
_gyro_estimate /= healthy_count;
}
_gyro_estimate += _gyro_bias;
}
}
}
void AP_AHRS_NavEKF::reset(bool recover_eulers)
{
AP_AHRS_DCM::reset(recover_eulers);
if (ekf_started) {
EKF.InitialiseFilterBootstrap();
}
}
// reset the current attitude, used on new IMU calibration
void AP_AHRS_NavEKF::reset_attitude(const float &_roll, const float &_pitch, const float &_yaw)
{
AP_AHRS_DCM::reset_attitude(_roll, _pitch, _yaw);
if (ekf_started) {
EKF.InitialiseFilterBootstrap();
}
}
// dead-reckoning support
bool AP_AHRS_NavEKF::get_position(struct Location &loc)
{
if (using_EKF() && EKF.getLLH(loc)) {
return true;
}
return AP_AHRS_DCM::get_position(loc);
}
// status reporting of estimated errors
float AP_AHRS_NavEKF::get_error_rp(void)
{
return AP_AHRS_DCM::get_error_rp();
}
float AP_AHRS_NavEKF::get_error_yaw(void)
{
return AP_AHRS_DCM::get_error_yaw();
}
// return a wind estimation vector, in m/s
Vector3f AP_AHRS_NavEKF::wind_estimate(void)
{
if (!using_EKF()) {
// EKF does not estimate wind speed when there is no airspeed
// sensor active
return AP_AHRS_DCM::wind_estimate();
}
Vector3f wind;
EKF.getWind(wind);
return wind;
}
// return an airspeed estimate if available. return true
// if we have an estimate
bool AP_AHRS_NavEKF::airspeed_estimate(float *airspeed_ret) const
{
return AP_AHRS_DCM::airspeed_estimate(airspeed_ret);
}
// true if compass is being used
bool AP_AHRS_NavEKF::use_compass(void)
{
if (using_EKF()) {
return EKF.use_compass();
}
return AP_AHRS_DCM::use_compass();
}
// return secondary attitude solution if available, as eulers in radians
bool AP_AHRS_NavEKF::get_secondary_attitude(Vector3f &eulers)
{
if (using_EKF()) {
// return DCM attitude
eulers = _dcm_attitude;
return true;
}
if (ekf_started) {
// EKF is secondary
EKF.getEulerAngles(eulers);
return true;
}
// no secondary available
return false;
}
// return secondary position solution if available
bool AP_AHRS_NavEKF::get_secondary_position(struct Location &loc)
{
if (using_EKF()) {
// return DCM position
AP_AHRS_DCM::get_position(loc);
return true;
}
if (ekf_started) {
// EKF is secondary
EKF.getLLH(loc);
return true;
}
// no secondary available
return false;
}
// EKF has a better ground speed vector estimate
Vector2f AP_AHRS_NavEKF::groundspeed_vector(void)
{
if (!using_EKF()) {
return AP_AHRS_DCM::groundspeed_vector();
}
Vector3f vec;
EKF.getVelNED(vec);
return Vector2f(vec.x, vec.y);
}
void AP_AHRS_NavEKF::set_home(const Location &loc)
{
AP_AHRS_DCM::set_home(loc);
}
// return true if inertial navigation is active
bool AP_AHRS_NavEKF::have_inertial_nav(void) const
{
return using_EKF();
}
// return a ground velocity in meters/second, North/East/Down
// order. Must only be called if have_inertial_nav() is true
bool AP_AHRS_NavEKF::get_velocity_NED(Vector3f &vec) const
{
if (using_EKF()) {
EKF.getVelNED(vec);
return true;
}
return false;
}
// return a relative ground position in meters/second, North/East/Down
// order. Must only be called if have_inertial_nav() is true
bool AP_AHRS_NavEKF::get_relative_position_NED(Vector3f &vec) const
{
if (using_EKF()) {
return EKF.getPosNED(vec);
}
return false;
}
bool AP_AHRS_NavEKF::using_EKF(void) const
{
return ekf_started && _ekf_use && EKF.healthy();
}
/*
check if the AHRS subsystem is healthy
*/
bool AP_AHRS_NavEKF::healthy(void)
{
if (_ekf_use) {
return ekf_started && EKF.healthy();
}
return AP_AHRS_DCM::healthy();
}
// true if the AHRS has completed initialisation
bool AP_AHRS_NavEKF::initialised(void) const
{
// initialisation complete 10sec after ekf has started
return (ekf_started && (hal.scheduler->millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS));
};
#endif // AP_AHRS_NAVEKF_AVAILABLE