ardupilot/libraries/AP_UAVCAN/AP_UAVCAN.h
2018-08-12 13:35:04 +01:00

277 lines
8.2 KiB
C++

/*
*
* Author: Eugene Shamaev
*/
#ifndef AP_UAVCAN_H_
#define AP_UAVCAN_H_
#include <uavcan/uavcan.hpp>
#include <AP_HAL/CAN.h>
#include <AP_HAL/Semaphores.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Param/AP_Param.h>
#include <AP_GPS/GPS_Backend.h>
#include <AP_Baro/AP_Baro_Backend.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_BattMonitor/AP_BattMonitor_Backend.h>
#include <uavcan/helpers/heap_based_pool_allocator.hpp>
#ifndef UAVCAN_NODE_POOL_SIZE
#define UAVCAN_NODE_POOL_SIZE 8192
#endif
#ifndef UAVCAN_NODE_POOL_BLOCK_SIZE
#define UAVCAN_NODE_POOL_BLOCK_SIZE 256
#endif
#ifndef UAVCAN_SRV_NUMBER
#define UAVCAN_SRV_NUMBER 18
#endif
#define AP_UAVCAN_MAX_LISTENERS 4
#define AP_UAVCAN_MAX_GPS_NODES 4
#define AP_UAVCAN_MAX_MAG_NODES 4
#define AP_UAVCAN_MAX_BARO_NODES 4
#define AP_UAVCAN_MAX_BI_NUMBER 4
#define AP_UAVCAN_SW_VERS_MAJOR 1
#define AP_UAVCAN_SW_VERS_MINOR 0
#define AP_UAVCAN_HW_VERS_MAJOR 1
#define AP_UAVCAN_HW_VERS_MINOR 0
#define AP_UAVCAN_MAX_LED_DEVICES 4
#define AP_UAVCAN_LED_DELAY_MILLISECONDS 50
class AP_UAVCAN : public AP_HAL::CANProtocol {
public:
AP_UAVCAN();
~AP_UAVCAN();
static const struct AP_Param::GroupInfo var_info[];
// Return uavcan from @iface or nullptr if it's not ready or doesn't exist
static AP_UAVCAN *get_uavcan(uint8_t iface);
// this function will register the listening class on a first free channel or on the specified channel
// if preferred_channel = 0 then free channel will be searched for
// if preferred_channel > 0 then listener will be added to specific channel
// return value is the number of assigned channel or 0 if fault
// channel numbering starts from 1
uint8_t register_gps_listener(AP_GPS_Backend* new_listener, uint8_t preferred_channel);
uint8_t register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node);
uint8_t find_gps_without_listener(void);
// Removes specified listener from all nodes
void remove_gps_listener(AP_GPS_Backend* rem_listener);
// Returns pointer to GPS state connected with specified node.
// If node is not found and there are free space, locate a new one
AP_GPS::GPS_State *find_gps_node(uint8_t node);
// Updates all listeners of specified node
void update_gps_state(uint8_t node);
struct Baro_Info {
float pressure;
float pressure_variance;
float temperature;
float temperature_variance;
};
uint8_t register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel);
uint8_t register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node);
void remove_baro_listener(AP_Baro_Backend* rem_listener);
Baro_Info *find_baro_node(uint8_t node);
uint8_t find_smallest_free_baro_node();
void update_baro_state(uint8_t node);
struct Mag_Info {
Vector3f mag_vector;
};
uint8_t register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel);
void remove_mag_listener(AP_Compass_Backend* rem_listener);
Mag_Info *find_mag_node(uint8_t node, uint8_t sensor_id);
uint8_t find_smallest_free_mag_node();
uint8_t register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node);
void update_mag_state(uint8_t node, uint8_t sensor_id);
struct BatteryInfo_Info {
float temperature;
float voltage;
float current;
float remaining_capacity_wh;
float full_charge_capacity_wh;
uint8_t status_flags;
};
uint8_t register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id);
void remove_BM_bi_listener(AP_BattMonitor_Backend* rem_listener);
BatteryInfo_Info *find_bi_id(uint8_t id);
uint8_t find_smallest_free_bi_id();
void update_bi_state(uint8_t id);
// synchronization for RC output
void SRV_sem_take();
void SRV_sem_give();
// synchronization for LED output
bool led_out_sem_take();
void led_out_sem_give();
void led_out_send();
// output from do_cyclic
void SRV_send_servos();
void SRV_send_esc();
private:
// ------------------------- GPS
// 255 - means free node
uint8_t _gps_nodes[AP_UAVCAN_MAX_GPS_NODES];
// Counter of how many listeners are connected to this source
uint8_t _gps_node_taken[AP_UAVCAN_MAX_GPS_NODES];
// GPS data of the sources
AP_GPS::GPS_State _gps_node_state[AP_UAVCAN_MAX_GPS_NODES];
// 255 - means no connection
uint8_t _gps_listener_to_node[AP_UAVCAN_MAX_LISTENERS];
// Listeners with callbacks to be updated
AP_GPS_Backend* _gps_listeners[AP_UAVCAN_MAX_LISTENERS];
// ------------------------- BARO
uint8_t _baro_nodes[AP_UAVCAN_MAX_BARO_NODES];
uint8_t _baro_node_taken[AP_UAVCAN_MAX_BARO_NODES];
Baro_Info _baro_node_state[AP_UAVCAN_MAX_BARO_NODES];
uint8_t _baro_listener_to_node[AP_UAVCAN_MAX_LISTENERS];
AP_Baro_Backend* _baro_listeners[AP_UAVCAN_MAX_LISTENERS];
// ------------------------- MAG
uint8_t _mag_nodes[AP_UAVCAN_MAX_MAG_NODES];
uint8_t _mag_node_taken[AP_UAVCAN_MAX_MAG_NODES];
Mag_Info _mag_node_state[AP_UAVCAN_MAX_MAG_NODES];
uint8_t _mag_node_max_sensorid_count[AP_UAVCAN_MAX_MAG_NODES];
uint8_t _mag_listener_to_node[AP_UAVCAN_MAX_LISTENERS];
AP_Compass_Backend* _mag_listeners[AP_UAVCAN_MAX_LISTENERS];
uint8_t _mag_listener_sensor_ids[AP_UAVCAN_MAX_LISTENERS];
// ------------------------- BatteryInfo
uint16_t _bi_id[AP_UAVCAN_MAX_BI_NUMBER];
uint16_t _bi_id_taken[AP_UAVCAN_MAX_BI_NUMBER];
BatteryInfo_Info _bi_id_state[AP_UAVCAN_MAX_BI_NUMBER];
uint16_t _bi_BM_listener_to_id[AP_UAVCAN_MAX_LISTENERS];
AP_BattMonitor_Backend* _bi_BM_listeners[AP_UAVCAN_MAX_LISTENERS];
struct {
uint16_t pulse;
uint16_t safety_pulse;
uint16_t failsafe_pulse;
bool esc_pending;
bool servo_pending;
} _SRV_conf[UAVCAN_SRV_NUMBER];
bool _initialized;
uint8_t _SRV_armed;
uint8_t _SRV_safety;
uint32_t _SRV_last_send_us;
typedef struct {
bool enabled;
uint8_t led_index;
uint8_t red;
uint8_t green;
uint8_t blue;
} _led_device;
struct {
bool broadcast_enabled;
_led_device devices[AP_UAVCAN_MAX_LED_DEVICES];
uint8_t devices_count;
uint64_t last_update;
} _led_conf;
AP_HAL::Semaphore *SRV_sem;
AP_HAL::Semaphore *_led_out_sem;
class SystemClock: public uavcan::ISystemClock, uavcan::Noncopyable {
SystemClock()
{
}
uavcan::UtcDuration utc_adjustment;
virtual void adjustUtc(uavcan::UtcDuration adjustment)
{
utc_adjustment = adjustment;
}
public:
virtual uavcan::MonotonicTime getMonotonic() const
{
uavcan::uint64_t usec = 0;
usec = AP_HAL::micros64();
return uavcan::MonotonicTime::fromUSec(usec);
}
virtual uavcan::UtcTime getUtc() const
{
uavcan::UtcTime utc;
uavcan::uint64_t usec = 0;
usec = AP_HAL::micros64();
utc.fromUSec(usec);
utc += utc_adjustment;
return utc;
}
static SystemClock& instance()
{
static SystemClock inst;
return inst;
}
};
uavcan::Node<0> *_node = nullptr;
uavcan::ISystemClock& get_system_clock();
uavcan::ICanDriver* get_can_driver();
uavcan::Node<0>* get_node();
// This will be needed to implement if UAVCAN is used with multithreading
// Such cases will be firmware update, etc.
class RaiiSynchronizer {
public:
RaiiSynchronizer()
{
}
~RaiiSynchronizer()
{
}
};
uavcan::HeapBasedPoolAllocator<UAVCAN_NODE_POOL_BLOCK_SIZE, AP_UAVCAN::RaiiSynchronizer> _node_allocator;
AP_Int8 _uavcan_node;
AP_Int32 _servo_bm;
AP_Int32 _esc_bm;
AP_Int16 _servo_rate_hz;
uint8_t _driver_index;
char _thread_name[9];
void loop(void);
public:
void init(uint8_t driver_index) override;
void SRV_arm_actuators(bool arm);
void SRV_write(uint16_t pulse_len, uint8_t ch);
void SRV_push_servos(void);
bool led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue);
};
#endif /* AP_UAVCAN_H_ */