ardupilot/libraries/AP_HAL_ChibiOS/hwdef/common/stm32_util.c
2023-03-15 19:08:53 +11:00

584 lines
16 KiB
C

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "stm32_util.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stm32_dma.h>
#include <hrt.h>
static int64_t utc_time_offset;
/*
setup the timer capture digital filter for a channel
*/
void stm32_timer_set_input_filter(stm32_tim_t *tim, uint8_t channel, uint8_t filter_mode)
{
switch (channel) {
case 0:
tim->CCMR1 |= STM32_TIM_CCMR1_IC1F(filter_mode);
break;
case 1:
tim->CCMR1 |= STM32_TIM_CCMR1_IC2F(filter_mode);
break;
case 2:
tim->CCMR2 |= STM32_TIM_CCMR2_IC3F(filter_mode);
break;
case 3:
tim->CCMR2 |= STM32_TIM_CCMR2_IC4F(filter_mode);
break;
}
}
/*
set the input source of a timer channel
*/
void stm32_timer_set_channel_input(stm32_tim_t *tim, uint8_t channel, uint8_t input_source)
{
switch (channel) {
case 0:
tim->CCER &= ~STM32_TIM_CCER_CC1E;
tim->CCMR1 &= ~STM32_TIM_CCMR1_CC1S_MASK;
tim->CCMR1 |= STM32_TIM_CCMR1_CC1S(input_source);
tim->CCER |= STM32_TIM_CCER_CC1E;
break;
case 1:
tim->CCER &= ~STM32_TIM_CCER_CC2E;
tim->CCMR1 &= ~STM32_TIM_CCMR1_CC2S_MASK;
tim->CCMR1 |= STM32_TIM_CCMR1_CC2S(input_source);
tim->CCER |= STM32_TIM_CCER_CC2E;
break;
case 2:
tim->CCER &= ~STM32_TIM_CCER_CC3E;
tim->CCMR2 &= ~STM32_TIM_CCMR2_CC3S_MASK;
tim->CCMR2 |= STM32_TIM_CCMR2_CC3S(input_source);
tim->CCER |= STM32_TIM_CCER_CC3E;
break;
case 3:
tim->CCER &= ~STM32_TIM_CCER_CC4E;
tim->CCMR2 &= ~STM32_TIM_CCMR2_CC4S_MASK;
tim->CCMR2 |= STM32_TIM_CCMR2_CC4S(input_source);
tim->CCER |= STM32_TIM_CCER_CC4E;
break;
}
}
#if CH_DBG_ENABLE_STACK_CHECK == TRUE && !defined(HAL_BOOTLOADER_BUILD)
void show_stack_usage(void)
{
thread_t *tp;
tp = chRegFirstThread();
do {
uint32_t stklimit = (uint32_t)tp->wabase;
uint8_t *p = (uint8_t *)tp->wabase;
while (*p == CH_DBG_STACK_FILL_VALUE) {
p++;
}
uint32_t stack_left = ((uint32_t)p) - stklimit;
printf("%s %u\n", tp->name, (unsigned)stack_left);
tp = chRegNextThread(tp);
} while (tp != NULL);
}
#endif
/*
set the utc time
*/
void stm32_set_utc_usec(uint64_t time_utc_usec)
{
uint64_t now = hrt_micros64();
if (now <= time_utc_usec) {
utc_time_offset = time_utc_usec - now;
}
}
/*
get system clock in UTC microseconds
*/
uint64_t stm32_get_utc_usec()
{
return hrt_micros64() + utc_time_offset;
}
struct utc_tm {
uint8_t tm_year; // since 1900
uint8_t tm_mon; // zero based
uint8_t tm_mday; // zero based
uint8_t tm_hour;
uint8_t tm_min;
uint8_t tm_sec;
};
/*
return true if a year is a leap year
*/
static bool is_leap(uint32_t y)
{
y += 1900;
return (y % 4) == 0 && ((y % 100) != 0 || (y % 400) == 0);
}
static const uint8_t ndays[2][12] ={
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
/*
parse a seconds since 1970 into a utc_tm structure
code based on _der_gmtime from samba
*/
static void parse_utc_seconds(uint64_t utc_sec, struct utc_tm *tm)
{
uint32_t secday = utc_sec % (3600U * 24U);
uint32_t days = utc_sec / (3600U * 24U);
memset(tm, 0, sizeof(*tm));
tm->tm_sec = secday % 60U;
tm->tm_min = (secday % 3600U) / 60U;
tm->tm_hour = secday / 3600U;
tm->tm_year = 70;
if (days > (2000 * 365)) {
// don't look for dates too far into the future
return;
}
while (true) {
unsigned dayinyear = (is_leap(tm->tm_year) ? 366 : 365);
if (days < dayinyear) {
break;
}
tm->tm_year += 1;
days -= dayinyear;
}
tm->tm_mon = 0;
while (true) {
unsigned daysinmonth = ndays[is_leap(tm->tm_year)?1:0][tm->tm_mon];
if (days < daysinmonth) {
break;
}
days -= daysinmonth;
tm->tm_mon++;
}
tm->tm_mday = days + 1;
}
/*
get time for fat filesystem. This is based on
rtcConvertDateTimeToFAT from the ChibiOS RTC driver. We don't use
the hw RTC clock as it is very inaccurate
*/
uint32_t get_fattime()
{
if (utc_time_offset == 0) {
// return a fixed time
return ((uint32_t)0 | (1 << 16)) | (1 << 21);
}
uint64_t utc_usec = stm32_get_utc_usec();
uint64_t utc_sec = utc_usec / 1000000UL;
struct utc_tm tm;
parse_utc_seconds(utc_sec, &tm);
uint32_t fattime;
fattime = tm.tm_sec >> 1U;
fattime |= tm.tm_min << 5U;
fattime |= tm.tm_hour << 11U;
fattime |= tm.tm_mday << 16U;
fattime |= (tm.tm_mon+1) << 21U;
fattime |= (uint32_t)((tm.tm_year-80) << 25U);
return fattime;
}
#if AP_FASTBOOT_ENABLED
// get RTC backup registers starting at given idx
void get_rtc_backup(uint8_t idx, uint32_t *v, uint8_t n)
{
while (n--) {
#if defined(STM32F1)
(void)idx;
__IO uint32_t *dr = (__IO uint32_t *)&BKP->DR1;
*v++ = (dr[n/2]&0xFFFF) | (dr[n/2+1]<<16);
#elif defined(STM32G4)
*v++ = ((__IO uint32_t *)&TAMP->BKP0R)[idx++];
#else
*v++ = ((__IO uint32_t *)&RTC->BKP0R)[idx++];
#endif
}
}
// set n RTC backup registers starting at given idx
void set_rtc_backup(uint8_t idx, const uint32_t *v, uint8_t n)
{
#if !defined(STM32F1)
if ((RCC->BDCR & RCC_BDCR_RTCEN) == 0) {
RCC->BDCR |= STM32_RTCSEL;
RCC->BDCR |= RCC_BDCR_RTCEN;
}
#ifdef PWR_CR_DBP
PWR->CR |= PWR_CR_DBP;
#else
PWR->CR1 |= PWR_CR1_DBP;
#endif
#endif
while (n--) {
#if defined(STM32F1)
(void)idx;
__IO uint32_t *dr = (__IO uint32_t *)&BKP->DR1;
dr[n/2] = (*v) & 0xFFFF;
dr[n/2+1] = (*v) >> 16;
#elif defined(STM32G4)
((__IO uint32_t *)&TAMP->BKP0R)[idx++] = *v++;
#else
((__IO uint32_t *)&RTC->BKP0R)[idx++] = *v++;
#endif
}
}
// see if RTC registers is setup for a fast reboot
enum rtc_boot_magic check_fast_reboot(void)
{
uint32_t v;
get_rtc_backup(0, &v, 1);
return (enum rtc_boot_magic)v;
}
// set RTC register for a fast reboot
void set_fast_reboot(enum rtc_boot_magic v)
{
if (check_fast_reboot() != v) {
uint32_t vv = (uint32_t)v;
set_rtc_backup(0, &vv, 1);
}
}
#else // AP_FASTBOOT_ENABLED is not set
// set n RTC backup registers starting at given idx
void set_rtc_backup(uint8_t idx, const uint32_t *v, uint8_t n)
{
(void)idx;
(void)v;
(void)n;
}
// get RTC backup registers starting at given idx
void get_rtc_backup(uint8_t idx, uint32_t *v, uint8_t n)
{
(void)idx;
(void)v;
(void)n;
}
#endif // AP_FASTBOOT_ENABLED
/*
enable peripheral power if needed This is done late to prevent
problems with CTS causing SiK radios to stay in the bootloader. A
SiK radio will stay in the bootloader if CTS is held to GND on boot
*/
void peripheral_power_enable(void)
{
#if defined(HAL_GPIO_PIN_nVDD_5V_PERIPH_EN) || defined(HAL_GPIO_PIN_VDD_5V_PERIPH_EN) || defined(HAL_GPIO_PIN_nVDD_5V_HIPOWER_EN) || defined(HAL_GPIO_PIN_VDD_3V3_SENSORS_EN)|| defined(HAL_GPIO_PIN_VDD_3V3_SENSORS2_EN) || defined(HAL_GPIO_PIN_VDD_3V3_SENSORS3_EN) || defined(HAL_GPIO_PIN_VDD_3V3_SENSORS4_EN) || defined(HAL_GPIO_PIN_nVDD_3V3_SD_CARD_EN) || defined(HAL_GPIO_PIN_VDD_3V3_SD_CARD_EN) || defined(HAL_GPIO_PIN_VDD_3V5_LTE_EN)
// we don't know what state the bootloader had the CTS pin in, so
// wait here with it pulled up from the PAL table for enough time
// for the radio to be definately powered down
uint8_t i;
for (i=0; i<100; i++) {
// use a loop as this may be a 16 bit timer
chThdSleep(chTimeMS2I(1));
}
#ifdef HAL_GPIO_PIN_nVDD_5V_PERIPH_EN
palWriteLine(HAL_GPIO_PIN_nVDD_5V_PERIPH_EN, 0);
#endif
#ifdef HAL_GPIO_PIN_VDD_5V_PERIPH_EN
palWriteLine(HAL_GPIO_PIN_VDD_5V_PERIPH_EN, 1);
#endif
#ifdef HAL_GPIO_PIN_nVDD_5V_HIPOWER_EN
palWriteLine(HAL_GPIO_PIN_nVDD_5V_HIPOWER_EN, 0);
#endif
#ifdef HAL_GPIO_PIN_VDD_5V_HIPOWER_EN
palWriteLine(HAL_GPIO_PIN_VDD_5V_HIPOWER_EN, 1);
#endif
#ifdef HAL_GPIO_PIN_VDD_3V3_SENSORS_EN
// the TBS-Colibri-F7 needs PE3 low at power on
palWriteLine(HAL_GPIO_PIN_VDD_3V3_SENSORS_EN, 1);
#endif
#ifdef HAL_GPIO_PIN_VDD_3V3_SENSORS2_EN
palWriteLine(HAL_GPIO_PIN_VDD_3V3_SENSORS2_EN, 1);
#endif
#ifdef HAL_GPIO_PIN_VDD_3V3_SENSORS3_EN
palWriteLine(HAL_GPIO_PIN_VDD_3V3_SENSORS3_EN, 1);
#endif
#ifdef HAL_GPIO_PIN_VDD_3V3_SENSORS4_EN
palWriteLine(HAL_GPIO_PIN_VDD_3V3_SENSORS4_EN, 1);
#endif
#ifdef HAL_GPIO_PIN_nVDD_3V3_SD_CARD_EN
// the TBS-Colibri-F7 needs PG7 low for SD card
palWriteLine(HAL_GPIO_PIN_nVDD_3V3_SD_CARD_EN, 0);
#endif
#ifdef HAL_GPIO_PIN_VDD_3V3_SD_CARD_EN
// others need it active high
palWriteLine(HAL_GPIO_PIN_VDD_3V3_SD_CARD_EN, 1);
#endif
#ifdef HAL_GPIO_PIN_VDD_3V5_LTE_EN
palWriteLine(HAL_GPIO_PIN_VDD_3V5_LTE_EN, 1);
#endif
for (i=0; i<20; i++) {
// give 20ms for sensors to settle
chThdSleep(chTimeMS2I(1));
}
#endif
}
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F4) || defined(STM32F3) || defined(STM32G4) || defined(STM32L4)
/*
read mode of a pin. This allows a pin config to be read, changed and
then written back
*/
iomode_t palReadLineMode(ioline_t line)
{
ioportid_t port = PAL_PORT(line);
uint8_t pad = PAL_PAD(line);
iomode_t ret = 0;
ret |= (port->MODER >> (pad*2)) & 0x3;
ret |= ((port->OTYPER >> pad)&1) << 2;
ret |= ((port->OSPEEDR >> (pad*2))&3) << 3;
ret |= ((port->PUPDR >> (pad*2))&3) << 5;
if (pad < 8) {
ret |= ((port->AFRL >> (pad*4))&0xF) << 7;
} else {
ret |= ((port->AFRH >> ((pad-8)*4))&0xF) << 7;
}
return ret;
}
/*
set pin as pullup, pulldown or floating
*/
void palLineSetPushPull(ioline_t line, enum PalPushPull pp)
{
ioportid_t port = PAL_PORT(line);
uint8_t pad = PAL_PAD(line);
port->PUPDR = (port->PUPDR & ~(3<<(pad*2))) | (pp<<(pad*2));
}
#endif // F7, H7, F4
void stm32_cacheBufferInvalidate(const void *p, size_t size)
{
cacheBufferInvalidate(p, size);
}
void stm32_cacheBufferFlush(const void *p, size_t size)
{
cacheBufferFlush(p, size);
}
#ifdef HAL_GPIO_PIN_FAULT
/*
optional support for hard-fault debugging using soft-serial output to a pin
To use this setup a pin like this:
Pxx FAULT OUTPUT HIGH
for some pin Pxx
On a STM32F405 the baudrate will be around 42kBaud. Use the
auto-baud function on your logic analyser to decode
*/
/*
send one bit out a debug line
*/
static void fault_send_bit(ioline_t line, uint8_t b)
{
palWriteLine(line, b);
for (uint32_t i=0; i<1000; i++) {
palWriteLine(line, b);
}
}
/*
send a byte out a debug line
*/
static void fault_send_byte(ioline_t line, uint8_t b)
{
fault_send_bit(line, 0); // start bit
for (uint8_t i=0; i<8; i++) {
uint8_t bit = (b & (1U<<i))?1:0;
fault_send_bit(line, bit);
}
fault_send_bit(line, 1); // stop bit
}
/*
send a string out a debug line
*/
static void fault_send_string(const char *str)
{
while (*str) {
fault_send_byte(HAL_GPIO_PIN_FAULT, (uint8_t)*str++);
}
fault_send_byte(HAL_GPIO_PIN_FAULT, (uint8_t)'\n');
}
void fault_printf(const char *fmt, ...)
{
static char buffer[100];
va_list ap;
va_start(ap, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, ap);
va_end(ap);
fault_send_string(buffer);
}
#endif // HAL_GPIO_PIN_HARDFAULT
void system_halt_hook(void)
{
#ifdef HAL_GPIO_PIN_FAULT
// optionally print the message on a fault pin
while (true) {
fault_printf("PANIC:%s\n", ch.dbg.panic_msg);
fault_printf("RA0:0x%08x\n", __builtin_return_address(0));
}
#endif
}
// hook for stack overflow
void stack_overflow(thread_t *tp)
{
#if !defined(HAL_BOOTLOADER_BUILD) && !defined(IOMCU_FW)
extern void AP_stack_overflow(const char *thread_name);
AP_stack_overflow(tp->name);
// if we get here then we are armed and got a stack overflow. We
// will report an internal error and keep trying to fly. We are
// quite likely to crash anyway due to memory corruption. The
// watchdog data should record the thread name and fault type
#else
(void)tp;
#endif
}
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
/*
check how much stack is free given a stack base. Assumes the fill
byte is 0x55
*/
uint32_t stack_free(void *stack_base)
{
const uint32_t *p = (uint32_t *)stack_base;
const uint32_t canary_word = 0x55555555;
while (*p == canary_word) {
p++;
}
return ((uint32_t)p) - (uint32_t)stack_base;
}
#endif
#if HAL_USE_HW_RNG && defined(RNG)
static bool stm32_rand_generate(uint32_t *val)
{
uint32_t error_bits = 0;
error_bits = RNG_SR_SEIS | RNG_SR_CEIS;
/* Check for error flags and if data is ready. */
if (((RNG->SR & error_bits) == 0) && ((RNG->SR & RNG_SR_DRDY) == RNG_SR_DRDY)) {
*val = RNG->DR;
} else {
return false;
}
return true;
}
bool stm32_rand_generate_blocking(unsigned char* output, unsigned int sz, uint32_t timeout_us)
{
unsigned int i = 0;
uint32_t run_until = hrt_micros32() + timeout_us;
uint32_t val;
while ((i < sz) && (hrt_micros32() < run_until)) {
/* If not aligned or there is odd/remainder */
if( (i + sizeof(uint32_t)) > sz ||
((uint32_t)&output[i] % sizeof(uint32_t)) != 0) {
/* Single byte at a time */
if (stm32_rand_generate(&val)) {
output[i] = val;
i++;
}
} else {
/* Use native 32 bit copy instruction */
if (stm32_rand_generate((uint32_t*)&output[i])) {
i += sizeof(uint32_t);
}
}
}
return i >= sz;
}
unsigned int stm32_rand_generate_nonblocking(unsigned char* output, unsigned int sz)
{
if ((RNG->SR & RNG_SR_DRDY) != RNG_SR_DRDY) {
return false;
}
unsigned int i = 0;
uint32_t val;
while (i < sz) {
/* If not aligned or there is odd/remainder */
if( (i + sizeof(uint32_t)) > sz ||
((uint32_t)&output[i] % sizeof(uint32_t)) != 0) {
/* Single byte at a time */
if (stm32_rand_generate(&val)) {
output[i] = val;
i++;
} else {
break;
}
} else {
/* Use native 32 bit copy instruction */
if (stm32_rand_generate((uint32_t*)&output[i])) {
i += sizeof(uint32_t);
} else {
break;
}
}
}
return i;
}
#endif // #if HAL_USE_HW_RNG && defined(RNG)
/*
see if we should limit flash to 1M on devices with older revisions of STM32F427
*/
#ifdef STM32F427xx
bool check_limit_flash_1M(void)
{
const uint16_t revid = (*(uint32_t *)DBGMCU_BASE) >> 16;
static const uint16_t badrevs[4] = { 0x1000, 0x1001, 0x1003, 0x1007 };
for (uint8_t i=0; i<4; i++) {
if (revid == badrevs[i]) {
return true;
}
}
return false;
}
#endif