ardupilot/libraries/AP_HAL_SITL/SITL_State.cpp

499 lines
13 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include "UARTDriver.h"
#include "Scheduler.h"
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/select.h>
#include <AP_Param/AP_Param.h>
#include <SITL/SIM_JSBSim.h>
#include <AP_HAL/utility/Socket.h>
extern const AP_HAL::HAL& hal;
using namespace HALSITL;
void SITL_State::_set_param_default(const char *parm)
{
char *pdup = strdup(parm);
char *p = strchr(pdup, '=');
if (p == nullptr) {
printf("Please specify parameter as NAME=VALUE");
exit(1);
}
float value = strtof(p+1, nullptr);
*p = 0;
enum ap_var_type var_type;
AP_Param *vp = AP_Param::find(pdup, &var_type);
if (vp == nullptr) {
printf("Unknown parameter %s\n", pdup);
exit(1);
}
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT32) {
((AP_Int32 *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT16) {
((AP_Int16 *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT8) {
((AP_Int8 *)vp)->set_and_save(value);
} else {
printf("Unable to set parameter %s\n", pdup);
exit(1);
}
printf("Set parameter %s to %f\n", pdup, value);
free(pdup);
}
/*
setup for SITL handling
*/
void SITL_State::_sitl_setup(const char *home_str)
{
_home_str = home_str;
#ifndef __CYGWIN__
_parent_pid = getppid();
#endif
_rcout_addr.sin_family = AF_INET;
_rcout_addr.sin_port = htons(_rcout_port);
inet_pton(AF_INET, _fdm_address, &_rcout_addr.sin_addr);
#ifndef HIL_MODE
_setup_fdm();
#endif
fprintf(stdout, "Starting SITL input\n");
// find the barometer object if it exists
_sitl = (SITL::SITL *)AP_Param::find_object("SIM_");
_barometer = (AP_Baro *)AP_Param::find_object("GND_");
_ins = (AP_InertialSensor *)AP_Param::find_object("INS_");
_compass = (Compass *)AP_Param::find_object("COMPASS_");
#if AP_TERRAIN_AVAILABLE
_terrain = (AP_Terrain *)AP_Param::find_object("TERRAIN_");
#endif
if (_sitl != nullptr) {
// setup some initial values
#ifndef HIL_MODE
_update_barometer(100);
_update_ins(0);
_update_compass();
_update_gps(0, 0, 0, 0, 0, 0, false);
#endif
if (enable_gimbal) {
gimbal = new SITL::Gimbal(_sitl->state);
}
if (_use_fg_view) {
fg_socket.connect("127.0.0.1", _fg_view_port);
}
fprintf(stdout, "Using Irlock at port : %d\n", _irlock_port);
_sitl->irlock_port = _irlock_port;
}
if (_synthetic_clock_mode) {
// start with non-zero clock
hal.scheduler->stop_clock(1);
}
}
#ifndef HIL_MODE
/*
setup a SITL FDM listening UDP port
*/
void SITL_State::_setup_fdm(void)
{
if (!_sitl_rc_in.bind("0.0.0.0", _rcin_port)) {
fprintf(stderr, "SITL: socket bind failed on RC in port : %d - %s\n", _rcin_port, strerror(errno));
fprintf(stderr, "Abording launch...\n");
exit(1);
}
_sitl_rc_in.reuseaddress();
_sitl_rc_in.set_blocking(false);
}
#endif
/*
step the FDM by one time step
*/
void SITL_State::_fdm_input_step(void)
{
static uint32_t last_pwm_input = 0;
_fdm_input_local();
/* make sure we die if our parent dies */
if (kill(_parent_pid, 0) != 0) {
exit(1);
}
if (_scheduler->interrupts_are_blocked() || _sitl == nullptr) {
return;
}
// simulate RC input at 50Hz
if (AP_HAL::millis() - last_pwm_input >= 20 && _sitl->rc_fail == 0) {
last_pwm_input = AP_HAL::millis();
new_rc_input = true;
}
_scheduler->sitl_begin_atomic();
if (_update_count == 0 && _sitl != nullptr) {
_update_gps(0, 0, 0, 0, 0, 0, false);
_update_barometer(0);
_scheduler->timer_event();
_scheduler->sitl_end_atomic();
return;
}
if (_sitl != nullptr) {
_update_gps(_sitl->state.latitude, _sitl->state.longitude,
_sitl->state.altitude,
_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD,
!_sitl->gps_disable);
_update_ins(_sitl->state.airspeed);
_update_barometer(_sitl->state.altitude);
_update_compass();
if (_sitl->adsb_plane_count >= 0 &&
adsb == nullptr) {
adsb = new SITL::ADSB(_sitl->state, _home_str);
} else if (_sitl->adsb_plane_count == -1 &&
adsb != nullptr) {
delete adsb;
adsb = nullptr;
}
}
// trigger all APM timers.
_scheduler->timer_event();
_scheduler->sitl_end_atomic();
}
void SITL_State::wait_clock(uint64_t wait_time_usec)
{
while (AP_HAL::micros64() < wait_time_usec) {
_fdm_input_step();
}
}
#ifndef HIL_MODE
/*
check for a SITL RC input packet
*/
void SITL_State::_check_rc_input(void)
{
ssize_t size;
struct pwm_packet {
uint16_t pwm[16];
} pwm_pkt;
size = _sitl_rc_in.recv(&pwm_pkt, sizeof(pwm_pkt), 0);
switch (size) {
case 8*2:
case 16*2: {
// a packet giving the receiver PWM inputs
uint8_t i;
for (i=0; i<size/2; i++) {
// setup the pwm input for the RC channel inputs
if (i < _sitl->state.rcin_chan_count) {
// we're using rc from simulator
continue;
}
if (pwm_pkt.pwm[i] != 0) {
pwm_input[i] = pwm_pkt.pwm[i];
}
}
break;
}
}
}
/*
output current state to flightgear
*/
void SITL_State::_output_to_flightgear(void)
{
SITL::FGNetFDM fdm {};
const SITL::sitl_fdm &sfdm = _sitl->state;
fdm.version = 0x18;
fdm.padding = 0;
fdm.longitude = radians(sfdm.longitude);
fdm.latitude = radians(sfdm.latitude);
fdm.altitude = sfdm.altitude;
fdm.agl = sfdm.altitude;
fdm.phi = radians(sfdm.rollDeg);
fdm.theta = radians(sfdm.pitchDeg);
fdm.psi = radians(sfdm.yawDeg);
if (_vehicle == ArduCopter) {
fdm.num_engines = 4;
for (uint8_t i=0; i<4; i++) {
fdm.rpm[i] = constrain_float((pwm_output[i]-1000), 0, 1000);
}
} else {
fdm.num_engines = 4;
fdm.rpm[0] = constrain_float((pwm_output[2]-1000)*3, 0, 3000);
// for quadplane
fdm.rpm[1] = constrain_float((pwm_output[5]-1000)*12, 0, 12000);
fdm.rpm[2] = constrain_float((pwm_output[6]-1000)*12, 0, 12000);
fdm.rpm[3] = constrain_float((pwm_output[7]-1000)*12, 0, 12000);
}
fdm.ByteSwap();
fg_socket.send(&fdm, sizeof(fdm));
}
/*
get FDM input from a local model
*/
void SITL_State::_fdm_input_local(void)
{
SITL::Aircraft::sitl_input input;
// check for direct RC input
_check_rc_input();
// construct servos structure for FDM
_simulator_servos(input);
// update the model
sitl_model->update(input);
// get FDM output from the model
if (_sitl) {
sitl_model->fill_fdm(_sitl->state);
_sitl->update_rate_hz = sitl_model->get_rate_hz();
if (_sitl->rc_fail == 0) {
for (uint8_t i=0; i< _sitl->state.rcin_chan_count; i++) {
pwm_input[i] = 1000 + _sitl->state.rcin[i]*1000;
}
}
}
if (gimbal != nullptr) {
gimbal->update();
}
if (adsb != nullptr) {
adsb->update();
}
if (_sitl && _use_fg_view) {
_output_to_flightgear();
}
// update simulation time
if (_sitl) {
hal.scheduler->stop_clock(_sitl->state.timestamp_us);
} else {
hal.scheduler->stop_clock(AP_HAL::micros64()+100);
}
set_height_agl();
_synthetic_clock_mode = true;
_update_count++;
}
#endif
/*
create sitl_input structure for sending to FDM
*/
void SITL_State::_simulator_servos(SITL::Aircraft::sitl_input &input)
{
static uint32_t last_update_usec;
/* this maps the registers used for PWM outputs. The RC
* driver updates these whenever it wants the channel output
* to change */
uint8_t i;
if (last_update_usec == 0) {
for (i=0; i<SITL_NUM_CHANNELS; i++) {
pwm_output[i] = 1000;
}
if (_vehicle == ArduPlane) {
pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500;
}
if (_vehicle == APMrover2) {
pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500;
}
}
// output at chosen framerate
uint32_t now = AP_HAL::micros();
last_update_usec = now;
// pass wind into simulators, using a wind gradient below 60m
float altitude = _barometer?_barometer->get_altitude():0;
float wind_speed = 0;
float wind_direction = 0;
if (_sitl) {
// The EKF does not like step inputs so this LPF keeps it happy.
wind_speed = _sitl->wind_speed_active = (0.95f*_sitl->wind_speed_active) + (0.05f*_sitl->wind_speed);
wind_direction = _sitl->wind_direction_active = (0.95f*_sitl->wind_direction_active) + (0.05f*_sitl->wind_direction);
}
if (altitude < 0) {
altitude = 0;
}
if (altitude < 60) {
wind_speed *= sqrtf(MAX(altitude / 60, 0));
}
input.wind.speed = wind_speed;
input.wind.direction = wind_direction;
input.wind.turbulence = _sitl?_sitl->wind_turbulance:0;
for (i=0; i<SITL_NUM_CHANNELS; i++) {
if (pwm_output[i] == 0xFFFF) {
input.servos[i] = 0;
} else {
input.servos[i] = pwm_output[i];
}
}
float engine_mul = _sitl?_sitl->engine_mul.get():1;
uint8_t engine_fail = _sitl?_sitl->engine_fail.get():0;
bool motors_on = false;
if (engine_fail >= ARRAY_SIZE(input.servos)) {
engine_fail = 0;
}
// apply engine multiplier to motor defined by the SIM_ENGINE_FAIL parameter
if (_vehicle != APMrover2) {
input.servos[engine_fail] = ((input.servos[engine_fail]-1000) * engine_mul) + 1000;
} else {
input.servos[engine_fail] = static_cast<uint16_t>(((input.servos[engine_fail] - 1500) * engine_mul) + 1500);
}
if (_vehicle == ArduPlane) {
motors_on = ((input.servos[2] - 1000) / 1000.0f) > 0;
} else if (_vehicle == APMrover2) {
input.servos[2] = static_cast<uint16_t>(constrain_int16(input.servos[2], 1000, 2000));
input.servos[0] = static_cast<uint16_t>(constrain_int16(input.servos[0], 1000, 2000));
motors_on = ((input.servos[2] - 1500) / 500.0f) != 0;
} else {
motors_on = false;
// run checks on each motor
for (i=0; i<4; i++) {
// check motors do not exceed their limits
if (input.servos[i] > 2000) input.servos[i] = 2000;
if (input.servos[i] < 1000) input.servos[i] = 1000;
// update motor_on flag
if ((input.servos[i]-1000)/1000.0f > 0) {
motors_on = true;
}
}
}
if (_sitl) {
_sitl->motors_on = motors_on;
}
float voltage = 0;
_current = 0;
if (_sitl != nullptr) {
if (_sitl->state.battery_voltage <= 0) {
// simulate simple battery setup
float throttle = motors_on?(input.servos[2]-1000) / 1000.0f:0;
// lose 0.7V at full throttle
voltage = _sitl->batt_voltage - 0.7f*fabsf(throttle);
// assume 50A at full throttle
_current = 50.0f * fabsf(throttle);
} else {
// FDM provides voltage and current
voltage = _sitl->state.battery_voltage;
_current = _sitl->state.battery_current;
}
}
// assume 3DR power brick
voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024;
current_pin_value = ((_current / 17.0f) / 5.0f) * 1024;
}
// generate a random float between -1 and 1
float SITL_State::_rand_float(void)
{
return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6;
}
// generate a random Vector3f of size 1
Vector3f SITL_State::_rand_vec3f(void)
{
Vector3f v = Vector3f(_rand_float(),
_rand_float(),
_rand_float());
if (v.length() != 0.0f) {
v.normalize();
}
return v;
}
void SITL_State::init(int argc, char * const argv[])
{
pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500;
pwm_input[4] = pwm_input[7] = 1800;
pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000;
_scheduler = Scheduler::from(hal.scheduler);
_parse_command_line(argc, argv);
}
/*
set height above the ground in meters
*/
void SITL_State::set_height_agl(void)
{
static float home_alt = -1;
if (home_alt == -1 && _sitl->state.altitude > 0) {
// remember home altitude as first non-zero altitude
home_alt = _sitl->state.altitude;
}
#if AP_TERRAIN_AVAILABLE
if (_terrain &&
_sitl->terrain_enable) {
// get height above terrain from AP_Terrain. This assumes
// AP_Terrain is working
float terrain_height_amsl;
struct Location location;
location.lat = _sitl->state.latitude*1.0e7;
location.lng = _sitl->state.longitude*1.0e7;
if (_terrain->height_amsl(location, terrain_height_amsl, false)) {
_sitl->height_agl = _sitl->state.altitude - terrain_height_amsl;
return;
}
}
#endif
// fall back to flat earth model
_sitl->height_agl = _sitl->state.altitude - home_alt;
}
#endif