mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 14:38:30 -04:00
170 lines
5.6 KiB
C++
170 lines
5.6 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
Balance Bot simulator class
|
|
*/
|
|
|
|
#define ALLOW_DOUBLE_MATH_FUNCTIONS
|
|
|
|
#include "SIM_BalanceBot.h"
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
namespace SITL {
|
|
|
|
BalanceBot::BalanceBot(const char *frame_str) :
|
|
Aircraft(frame_str),
|
|
skid_turn_rate(0.15708) // meters/sec
|
|
{
|
|
dcm.from_euler(0,0,0); // initial yaw, pitch and roll in radians
|
|
lock_step_scheduled = true;
|
|
printf("Balance Bot Simulation Started\n");
|
|
}
|
|
|
|
/*
|
|
return yaw rate in degrees/second given steering_angle
|
|
*/
|
|
float BalanceBot::calc_yaw_rate(float steering) const
|
|
{
|
|
float wheel_base_length = 0.15f;
|
|
return steering * degrees( skid_turn_rate/wheel_base_length );
|
|
}
|
|
|
|
|
|
/*
|
|
update the Balance Bot simulation by one time step
|
|
*/
|
|
/*
|
|
* The balance bot is physically modeled as an inverted pendulum(cuboid) on wheels
|
|
* Further details on the equations used can be found here:
|
|
* 1) http://robotics.ee.uwa.edu.au/theses/2003-Balance-Ooi.pdf page 33 onwards
|
|
* 2) http://journals.sagepub.com/doi/pdf/10.5772/63933
|
|
*/
|
|
void BalanceBot::update(const struct sitl_input &input)
|
|
{
|
|
// pendulum/chassis constants
|
|
const float m_p = 3.0f; //pendulum mass(kg)
|
|
// const float width = 0.0650f; //width(m)
|
|
// const float height = 0.240f; //height(m)
|
|
const float l = 0.10f; //height of center of mass from base(m)
|
|
const float i_p = 0.01250f; //Moment of inertia about pitch axis(SI units)
|
|
|
|
// wheel constants
|
|
const float r_w = 0.05f; //wheel radius(m)
|
|
const float m_w = 0.1130f; //wheel mass(kg)
|
|
const float i_w = 0.00015480f; // moment of inertia of wheel(SI units)
|
|
|
|
// motor constants
|
|
const float R = 3.0f; //Winding resistance(ohm)
|
|
const float k_e = 0.240f; //back-emf constant(SI units)
|
|
const float k_t = 0.240f; //torque constant(SI units)
|
|
const float v_max = 12.0f; //max input voltage(V)
|
|
const float gear_ratio = 50.0f;
|
|
|
|
// balance bot uses skid steering
|
|
const float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
const float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
|
const float steering = motor1 - motor2;
|
|
const float throttle = 0.5 * (motor1 + motor2);
|
|
|
|
// motor input voltage: (throttle/max_throttle)*v_max
|
|
const float v = throttle*v_max;
|
|
|
|
// how much time has passed?
|
|
const float delta_time = frame_time_us * 1.0e-6f;
|
|
|
|
// yaw rate in degrees/s
|
|
const float yaw_rate = calc_yaw_rate(steering);
|
|
|
|
// obtain roll, pitch, yaw from dcm
|
|
float r, p, y;
|
|
dcm.to_euler(&r, &p, &y);
|
|
float theta = p; //radians
|
|
|
|
float ang_vel = gyro.y; //radians/s
|
|
|
|
// t1,t2,t3 are terms in the equation to find vehicle frame x acceleration
|
|
const float t1 = ((2.0f*gear_ratio*k_t*v/(R*r_w)) - (2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w*r_w)) - (m_p*l*ang_vel*ang_vel*sin(theta))) * (i_p + m_p*l*l);
|
|
const float t2 = -m_p*l*cos(theta)*((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + (m_p*GRAVITY_MSS*l*sin(theta)));
|
|
const float t3 = ( ((2.0f*m_w + 2.0f*i_w/(r_w*r_w) + m_p) * (i_p + m_p*l*l)) - (m_p*m_p*l*l*cos(theta)*cos(theta)) );
|
|
|
|
//vehicle frame x acceleration
|
|
const float accel_vf_x = (t1-t2)/t3;
|
|
|
|
const float angular_accel_bf_y = ((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + m_p*l*accel_vf_x*cos(theta) + m_p*GRAVITY_MSS*l*sin(theta))
|
|
/ (i_p + m_p*l*l);
|
|
|
|
// accel in body frame due to motor
|
|
accel_body = Vector3f(accel_vf_x*cos(theta), 0, -accel_vf_x*sin(theta));
|
|
|
|
// update theta and angular velocity
|
|
ang_vel += angular_accel_bf_y * delta_time;
|
|
theta += ang_vel * delta_time;
|
|
theta = fmod(theta, radians(360));
|
|
|
|
gyro = Vector3f(0, ang_vel, radians(yaw_rate));
|
|
|
|
// update attitude
|
|
dcm.rotate(gyro * delta_time);
|
|
dcm.normalize();
|
|
|
|
// add in accel due to direction change
|
|
accel_body.y += radians(yaw_rate) * velocity_vf_x;
|
|
|
|
// update x velocity in vehicle frame
|
|
velocity_vf_x += accel_vf_x * delta_time;
|
|
|
|
// now in earth frame
|
|
Vector3f accel_earth = dcm * accel_body;
|
|
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
|
|
|
|
// we are on the ground, so our vertical accel is zero
|
|
accel_earth.z = 0;
|
|
|
|
if (!hal.util->get_soft_armed()) {
|
|
// reset to vertical when not armed for faster testing
|
|
accel_earth.zero();
|
|
velocity_ef.zero();
|
|
dcm.identity();
|
|
gyro.zero();
|
|
velocity_vf_x =0;
|
|
}
|
|
|
|
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
|
// acceleration (ie. real movement), plus gravity
|
|
accel_body += dcm.transposed() * (Vector3f(0, 0, -GRAVITY_MSS));
|
|
|
|
// new velocity vector
|
|
velocity_ef += accel_earth * delta_time;
|
|
|
|
// new position vector
|
|
position += (velocity_ef * delta_time).todouble();
|
|
|
|
// neglect roll
|
|
dcm.to_euler(&r, &p, &y);
|
|
dcm.from_euler(0.0f, p, y);
|
|
use_smoothing = true;
|
|
|
|
// update lat/lon/altitude
|
|
update_position();
|
|
time_advance();
|
|
|
|
// update magnetic field
|
|
update_mag_field_bf();
|
|
}
|
|
|
|
}// namespace SITL
|