ardupilot/libraries/AP_Mount/SoloGimbal.cpp

502 lines
18 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include <AP_AHRS/AP_AHRS.h>
#if AP_AHRS_NAVEKF_AVAILABLE
#include "SoloGimbal.h"
#include <stdio.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Logger/AP_Logger.h>
extern const AP_HAL::HAL& hal;
bool SoloGimbal::present()
{
if (_state != GIMBAL_STATE_NOT_PRESENT && AP_HAL::millis()-_last_report_msg_ms > 3000) {
// gimbal went away
_state = GIMBAL_STATE_NOT_PRESENT;
return false;
}
return _state != GIMBAL_STATE_NOT_PRESENT;
}
bool SoloGimbal::aligned()
{
return present() && _state == GIMBAL_STATE_PRESENT_RUNNING;
}
gimbal_mode_t SoloGimbal::get_mode()
{
const AP_AHRS_NavEKF &_ahrs = AP::ahrs_navekf();
if ((_gimbalParams.initialized() && is_zero(_gimbalParams.get_K_rate())) || (_ahrs.get_rotation_body_to_ned().c.z < 0 && !(_lockedToBody || _calibrator.running()))) {
return GIMBAL_MODE_IDLE;
} else if (!_ekf.getStatus()) {
return GIMBAL_MODE_POS_HOLD;
} else if (_calibrator.running() || _lockedToBody) {
return GIMBAL_MODE_POS_HOLD_FF;
} else {
return GIMBAL_MODE_STABILIZE;
}
}
void SoloGimbal::receive_feedback(mavlink_channel_t chan, const mavlink_message_t *msg)
{
mavlink_gimbal_report_t report_msg;
mavlink_msg_gimbal_report_decode(msg, &report_msg);
uint32_t tnow_ms = AP_HAL::millis();
_last_report_msg_ms = tnow_ms;
_gimbalParams.set_channel(chan);
if (report_msg.target_system != 1) {
_state = GIMBAL_STATE_NOT_PRESENT;
} else {
GCS_MAVLINK::set_channel_private(chan);
}
switch(_state) {
case GIMBAL_STATE_NOT_PRESENT:
// gimbal was just connected or we just rebooted, transition to PRESENT_INITIALIZING
_gimbalParams.reset();
_gimbalParams.set_param(GMB_PARAM_GMB_SYSID, 1);
_state = GIMBAL_STATE_PRESENT_INITIALIZING;
break;
case GIMBAL_STATE_PRESENT_INITIALIZING:
_gimbalParams.update();
if (_gimbalParams.initialized()) {
// parameters done initializing, finalize initialization and transition to aligning
extract_feedback(report_msg);
_ang_vel_mag_filt = 20;
_filtered_joint_angles = _measurement.joint_angles;
_vehicle_to_gimbal_quat_filt.from_vector312(_filtered_joint_angles.x,_filtered_joint_angles.y,_filtered_joint_angles.z);
_ekf.reset();
_state = GIMBAL_STATE_PRESENT_ALIGNING;
}
break;
case GIMBAL_STATE_PRESENT_ALIGNING:
_gimbalParams.update();
extract_feedback(report_msg);
update_estimators();
if (_ekf.getStatus()) {
// EKF done aligning, transition to running
_state = GIMBAL_STATE_PRESENT_RUNNING;
}
break;
case GIMBAL_STATE_PRESENT_RUNNING:
_gimbalParams.update();
extract_feedback(report_msg);
update_estimators();
break;
}
send_controls(chan);
}
void SoloGimbal::send_controls(mavlink_channel_t chan)
{
if (_state == GIMBAL_STATE_PRESENT_RUNNING) {
// get the gimbal quaternion estimate
Quaternion quatEst;
_ekf.getQuat(quatEst);
// run rate controller
_ang_vel_dem_rads.zero();
switch(get_mode()) {
case GIMBAL_MODE_POS_HOLD_FF: {
_ang_vel_dem_rads += get_ang_vel_dem_body_lock();
_ang_vel_dem_rads += get_ang_vel_dem_gyro_bias();
float _ang_vel_dem_radsLen = _ang_vel_dem_rads.length();
if (_ang_vel_dem_radsLen > radians(400)) {
_ang_vel_dem_rads *= radians(400)/_ang_vel_dem_radsLen;
}
if (HAVE_PAYLOAD_SPACE(chan, GIMBAL_CONTROL)) {
mavlink_msg_gimbal_control_send(chan, mavlink_system.sysid, _compid,
_ang_vel_dem_rads.x, _ang_vel_dem_rads.y, _ang_vel_dem_rads.z);
}
break;
}
case GIMBAL_MODE_STABILIZE: {
_ang_vel_dem_rads += get_ang_vel_dem_yaw(quatEst);
_ang_vel_dem_rads += get_ang_vel_dem_tilt(quatEst);
_ang_vel_dem_rads += get_ang_vel_dem_feedforward(quatEst);
_ang_vel_dem_rads += get_ang_vel_dem_gyro_bias();
float ang_vel_dem_norm = _ang_vel_dem_rads.length();
if (ang_vel_dem_norm > radians(400)) {
_ang_vel_dem_rads *= radians(400)/ang_vel_dem_norm;
}
if (HAVE_PAYLOAD_SPACE(chan, GIMBAL_CONTROL)) {
mavlink_msg_gimbal_control_send(chan, mavlink_system.sysid, _compid,
_ang_vel_dem_rads.x, _ang_vel_dem_rads.y, _ang_vel_dem_rads.z);
}
break;
}
default:
case GIMBAL_MODE_IDLE:
case GIMBAL_MODE_POS_HOLD:
break;
}
}
// set GMB_POS_HOLD
if (get_mode() == GIMBAL_MODE_POS_HOLD) {
_gimbalParams.set_param(GMB_PARAM_GMB_POS_HOLD, 1);
} else {
_gimbalParams.set_param(GMB_PARAM_GMB_POS_HOLD, 0);
}
// set GMB_MAX_TORQUE
float max_torque;
_gimbalParams.get_param(GMB_PARAM_GMB_MAX_TORQUE, max_torque, 0);
if (!is_equal(max_torque,_max_torque) && !is_zero(max_torque)) {
_max_torque = max_torque;
}
if (!hal.util->get_soft_armed() || joints_near_limits()) {
_gimbalParams.set_param(GMB_PARAM_GMB_MAX_TORQUE, _max_torque);
} else {
_gimbalParams.set_param(GMB_PARAM_GMB_MAX_TORQUE, 0);
}
}
void SoloGimbal::extract_feedback(const mavlink_gimbal_report_t& report_msg)
{
_measurement.delta_time = report_msg.delta_time;
_measurement.delta_angles.x = report_msg.delta_angle_x;
_measurement.delta_angles.y = report_msg.delta_angle_y;
_measurement.delta_angles.z = report_msg.delta_angle_z;
_measurement.delta_velocity.x = report_msg.delta_velocity_x,
_measurement.delta_velocity.y = report_msg.delta_velocity_y;
_measurement.delta_velocity.z = report_msg.delta_velocity_z;
_measurement.joint_angles.x = report_msg.joint_roll;
_measurement.joint_angles.y = report_msg.joint_el;
_measurement.joint_angles.z = report_msg.joint_az;
if (_calibrator.get_status() == ACCEL_CAL_COLLECTING_SAMPLE) {
_calibrator.new_sample(_measurement.delta_velocity,_measurement.delta_time);
}
_measurement.delta_angles -= _gimbalParams.get_gyro_bias() * _measurement.delta_time;
_measurement.joint_angles -= _gimbalParams.get_joint_bias();
_measurement.delta_velocity -= _gimbalParams.get_accel_bias() * _measurement.delta_time;
Vector3f accel_gain = _gimbalParams.get_accel_gain();
_measurement.delta_velocity.x *= (is_zero(accel_gain.x) ? 1.0f : accel_gain.x);
_measurement.delta_velocity.y *= (is_zero(accel_gain.y) ? 1.0f : accel_gain.y);
_measurement.delta_velocity.z *= (is_zero(accel_gain.z) ? 1.0f : accel_gain.z);
// update _ang_vel_mag_filt, used for accel sample readiness
Vector3f ang_vel = _measurement.delta_angles / _measurement.delta_time;
Vector3f ekf_gyro_bias;
_ekf.getGyroBias(ekf_gyro_bias);
ang_vel -= ekf_gyro_bias;
float alpha = constrain_float(_measurement.delta_time/(_measurement.delta_time+0.5f),0.0f,1.0f);
_ang_vel_mag_filt += (ang_vel.length()-_ang_vel_mag_filt)*alpha;
_ang_vel_mag_filt = MIN(_ang_vel_mag_filt,20.0f);
// get complementary filter inputs
_vehicle_to_gimbal_quat.from_vector312(_measurement.joint_angles.x,_measurement.joint_angles.y,_measurement.joint_angles.z);
// update log deltas
_log_dt += _measurement.delta_time;
_log_del_ang += _measurement.delta_angles;
_log_del_vel += _measurement.delta_velocity;
}
void SoloGimbal::update_estimators()
{
if (_state == GIMBAL_STATE_NOT_PRESENT || _state == GIMBAL_STATE_PRESENT_INITIALIZING) {
return;
}
// Run the gimbal attitude and gyro bias estimator
_ekf.RunEKF(_measurement.delta_time, _measurement.delta_angles, _measurement.delta_velocity, _measurement.joint_angles);
update_joint_angle_est();
}
void SoloGimbal::readVehicleDeltaAngle(uint8_t ins_index, Vector3f &dAng) {
const AP_InertialSensor &ins = AP::ins();
if (ins_index < ins.get_gyro_count()) {
if (!ins.get_delta_angle(ins_index,dAng)) {
dAng = ins.get_gyro(ins_index) / ins.get_sample_rate();
}
}
}
void SoloGimbal::update_fast() {
const AP_InertialSensor &ins = AP::ins();
if (ins.use_gyro(0) && ins.use_gyro(1)) {
// dual gyro mode - average first two gyros
Vector3f dAng;
readVehicleDeltaAngle(0, dAng);
_vehicle_delta_angles += dAng*0.5f;
readVehicleDeltaAngle(1, dAng);
_vehicle_delta_angles += dAng*0.5f;
} else {
// single gyro mode - one of the first two gyros are unhealthy or don't exist
// just read primary gyro
Vector3f dAng;
readVehicleDeltaAngle(ins.get_primary_gyro(), dAng);
_vehicle_delta_angles += dAng;
}
}
void SoloGimbal::update_joint_angle_est()
{
static const float tc = 1.0f;
float dt = _measurement.delta_time;
float alpha = constrain_float(dt/(dt+tc),0.0f,1.0f);
Matrix3f Tvg; // vehicle frame to gimbal frame
_vehicle_to_gimbal_quat.inverse().rotation_matrix(Tvg);
Vector3f delta_angle_bias;
_ekf.getGyroBias(delta_angle_bias);
delta_angle_bias *= dt;
Vector3f joint_del_ang;
gimbal_ang_vel_to_joint_rates((_measurement.delta_angles-delta_angle_bias) - Tvg*_vehicle_delta_angles, joint_del_ang);
_filtered_joint_angles += joint_del_ang;
_filtered_joint_angles += (_measurement.joint_angles-_filtered_joint_angles)*alpha;
_vehicle_to_gimbal_quat_filt.from_vector312(_filtered_joint_angles.x,_filtered_joint_angles.y,_filtered_joint_angles.z);
_vehicle_delta_angles.zero();
}
Vector3f SoloGimbal::get_ang_vel_dem_yaw(const Quaternion &quatEst)
{
static const float tc = 0.1f;
static const float yawErrorLimit = radians(5.7f);
float dt = _measurement.delta_time;
float alpha = dt/(dt+tc);
const AP_AHRS_NavEKF &_ahrs = AP::ahrs_navekf();
Matrix3f Tve = _ahrs.get_rotation_body_to_ned();
Matrix3f Teg;
quatEst.inverse().rotation_matrix(Teg);
//_vehicle_yaw_rate_ef_filt = _ahrs.get_yaw_rate_earth();
// filter the vehicle yaw rate to remove noise
_vehicle_yaw_rate_ef_filt += (_ahrs.get_yaw_rate_earth() - _vehicle_yaw_rate_ef_filt) * alpha;
float yaw_rate_ff = 0;
// calculate an earth-frame yaw rate feed-forward that prevents gimbal from exceeding the maximum yaw error
if (_vehicle_yaw_rate_ef_filt > _gimbalParams.get_K_rate()*yawErrorLimit) {
yaw_rate_ff = _vehicle_yaw_rate_ef_filt-_gimbalParams.get_K_rate()*yawErrorLimit;
} else if (_vehicle_yaw_rate_ef_filt < -_gimbalParams.get_K_rate()*yawErrorLimit) {
yaw_rate_ff = _vehicle_yaw_rate_ef_filt+_gimbalParams.get_K_rate()*yawErrorLimit;
}
// filter the feed-forward to remove noise
//_yaw_rate_ff_ef_filt += (yaw_rate_ff - _yaw_rate_ff_ef_filt) * alpha;
Vector3f gimbalRateDemVecYaw;
gimbalRateDemVecYaw.z = yaw_rate_ff - _gimbalParams.get_K_rate() * _filtered_joint_angles.z / constrain_float(Tve.c.z,0.5f,1.0f);
gimbalRateDemVecYaw.z /= constrain_float(Tve.c.z,0.5f,1.0f);
// rotate the rate demand into gimbal frame
gimbalRateDemVecYaw = Teg * gimbalRateDemVecYaw;
return gimbalRateDemVecYaw;
}
Vector3f SoloGimbal::get_ang_vel_dem_tilt(const Quaternion &quatEst)
{
// Calculate the gimbal 321 Euler angle estimates relative to earth frame
Vector3f eulerEst = quatEst.to_vector312();
// Calculate a demanded quaternion using the demanded roll and pitch and estimated yaw (yaw is slaved to the vehicle)
Quaternion quatDem;
quatDem.from_vector312( _att_target_euler_rad.x,
_att_target_euler_rad.y,
eulerEst.z);
//divide the demanded quaternion by the estimated to get the error
Quaternion quatErr = quatDem / quatEst;
// Convert to a delta rotation
quatErr.normalize();
Vector3f deltaAngErr;
quatErr.to_axis_angle(deltaAngErr);
// multiply the angle error vector by a gain to calculate a demanded gimbal rate required to control tilt
Vector3f gimbalRateDemVecTilt = deltaAngErr * _gimbalParams.get_K_rate();
return gimbalRateDemVecTilt;
}
Vector3f SoloGimbal::get_ang_vel_dem_feedforward(const Quaternion &quatEst)
{
// quaternion demanded at the previous time step
static float lastDem;
// calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation
float delta = _att_target_euler_rad.y - lastDem;
lastDem = _att_target_euler_rad.y;
Vector3f gimbalRateDemVecForward;
gimbalRateDemVecForward.y = delta / _measurement.delta_time;
return gimbalRateDemVecForward;
}
Vector3f SoloGimbal::get_ang_vel_dem_gyro_bias()
{
Vector3f gyroBias;
_ekf.getGyroBias(gyroBias);
return gyroBias + _gimbalParams.get_gyro_bias();
}
Vector3f SoloGimbal::get_ang_vel_dem_body_lock()
{
// Define rotation from vehicle to gimbal using a 312 rotation sequence
Matrix3f Tvg;
_vehicle_to_gimbal_quat_filt.inverse().rotation_matrix(Tvg);
// multiply the joint angles by a gain to calculate a rate vector required to keep the joints centred
Vector3f gimbalRateDemVecBodyLock;
gimbalRateDemVecBodyLock = _filtered_joint_angles * -_gimbalParams.get_K_rate();
joint_rates_to_gimbal_ang_vel(gimbalRateDemVecBodyLock, gimbalRateDemVecBodyLock);
// Add a feedforward term from vehicle gyros
const AP_AHRS_NavEKF &_ahrs = AP::ahrs_navekf();
gimbalRateDemVecBodyLock += Tvg * _ahrs.get_gyro();
return gimbalRateDemVecBodyLock;
}
void SoloGimbal::update_target(const Vector3f &newTarget)
{
// Low-pass filter
_att_target_euler_rad.y = _att_target_euler_rad.y + 0.02f*(newTarget.y - _att_target_euler_rad.y);
// Update tilt
_att_target_euler_rad.y = constrain_float(_att_target_euler_rad.y,radians(-90),radians(0));
}
void SoloGimbal::write_logs()
{
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
return;
}
uint32_t tstamp = AP_HAL::millis();
Vector3f eulerEst;
Quaternion quatEst;
_ekf.getQuat(quatEst);
quatEst.to_euler(eulerEst.x, eulerEst.y, eulerEst.z);
struct log_Gimbal1 pkt1 = {
LOG_PACKET_HEADER_INIT(LOG_GIMBAL1_MSG),
time_ms : tstamp,
delta_time : _log_dt,
delta_angles_x : _log_del_ang.x,
delta_angles_y : _log_del_ang.y,
delta_angles_z : _log_del_ang.z,
delta_velocity_x : _log_del_vel.x,
delta_velocity_y : _log_del_vel.y,
delta_velocity_z : _log_del_vel.z,
joint_angles_x : _measurement.joint_angles.x,
joint_angles_y : _measurement.joint_angles.y,
joint_angles_z : _measurement.joint_angles.z
};
logger->WriteBlock(&pkt1, sizeof(pkt1));
struct log_Gimbal2 pkt2 = {
LOG_PACKET_HEADER_INIT(LOG_GIMBAL2_MSG),
time_ms : tstamp,
est_sta : (uint8_t) _ekf.getStatus(),
est_x : eulerEst.x,
est_y : eulerEst.y,
est_z : eulerEst.z,
rate_x : _ang_vel_dem_rads.x,
rate_y : _ang_vel_dem_rads.y,
rate_z : _ang_vel_dem_rads.z,
target_x: _att_target_euler_rad.x,
target_y: _att_target_euler_rad.y,
target_z: _att_target_euler_rad.z
};
logger->WriteBlock(&pkt2, sizeof(pkt2));
_log_dt = 0;
_log_del_ang.zero();
_log_del_vel.zero();
}
bool SoloGimbal::joints_near_limits()
{
return fabsf(_measurement.joint_angles.x) > radians(40) || _measurement.joint_angles.y > radians(45) || _measurement.joint_angles.y < -radians(135);
}
AccelCalibrator* SoloGimbal::_acal_get_calibrator(uint8_t instance)
{
if(instance==0 && (present() || _calibrator.get_status() == ACCEL_CAL_SUCCESS)) {
return &_calibrator;
} else {
return nullptr;
}
}
bool SoloGimbal::_acal_get_ready_to_sample()
{
return _ang_vel_mag_filt < radians(10);
}
bool SoloGimbal::_acal_get_saving()
{
return _gimbalParams.flashing();
}
void SoloGimbal::_acal_save_calibrations()
{
if (_calibrator.get_status() != ACCEL_CAL_SUCCESS) {
return;
}
Vector3f bias;
Vector3f gain;
_calibrator.get_calibration(bias,gain);
_gimbalParams.set_accel_bias(bias);
_gimbalParams.set_accel_gain(gain);
_gimbalParams.flash();
}
void SoloGimbal::gimbal_ang_vel_to_joint_rates(const Vector3f& ang_vel, Vector3f& joint_rates)
{
float sin_theta = sinf(_measurement.joint_angles.y);
float cos_theta = cosf(_measurement.joint_angles.y);
float sin_phi = sinf(_measurement.joint_angles.x);
float cos_phi = cosf(_measurement.joint_angles.x);
float sec_phi = 1.0f/cos_phi;
float tan_phi = sin_phi/cos_phi;
joint_rates.x = ang_vel.x*cos_theta+ang_vel.z*sin_theta;
joint_rates.y = ang_vel.x*sin_theta*tan_phi-ang_vel.z*cos_theta*tan_phi+ang_vel.y;
joint_rates.z = sec_phi*(ang_vel.z*cos_theta-ang_vel.x*sin_theta);
}
void SoloGimbal::joint_rates_to_gimbal_ang_vel(const Vector3f& joint_rates, Vector3f& ang_vel)
{
float sin_theta = sinf(_measurement.joint_angles.y);
float cos_theta = cosf(_measurement.joint_angles.y);
float sin_phi = sinf(_measurement.joint_angles.x);
float cos_phi = cosf(_measurement.joint_angles.x);
ang_vel.x = cos_theta*joint_rates.x-sin_theta*cos_phi*joint_rates.z;
ang_vel.y = joint_rates.y + sin_phi*joint_rates.z;
ang_vel.z = sin_theta*joint_rates.x+cos_theta*cos_phi*joint_rates.z;
}
#endif // AP_AHRS_NAVEKF_AVAILABLE