ardupilot/libraries/AP_InertialSensor/AP_InertialSensor.cpp

2141 lines
76 KiB
C++

#include <assert.h>
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/I2CDevice.h>
#include <AP_HAL/SPIDevice.h>
#include <AP_Math/AP_Math.h>
#include <AP_Notify/AP_Notify.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_AHRS/AP_AHRS.h>
#include "AP_InertialSensor.h"
#include "AP_InertialSensor_BMI160.h"
#include "AP_InertialSensor_Backend.h"
#include "AP_InertialSensor_HIL.h"
#include "AP_InertialSensor_L3G4200D.h"
#include "AP_InertialSensor_LSM9DS0.h"
#include "AP_InertialSensor_LSM9DS1.h"
#include "AP_InertialSensor_Invensense.h"
#include "AP_InertialSensor_SITL.h"
#include "AP_InertialSensor_RST.h"
#include "AP_InertialSensor_BMI055.h"
#include "AP_InertialSensor_BMI088.h"
#include "AP_InertialSensor_Invensensev2.h"
#include "AP_InertialSensor_ADIS1647x.h"
/* Define INS_TIMING_DEBUG to track down scheduling issues with the main loop.
* Output is on the debug console. */
#ifdef INS_TIMING_DEBUG
#include <stdio.h>
#define timing_printf(fmt, args...) do { printf("[timing] " fmt, ##args); } while(0)
#else
#define timing_printf(fmt, args...)
#endif
#ifndef HAL_DEFAULT_INS_FAST_SAMPLE
#define HAL_DEFAULT_INS_FAST_SAMPLE 1
#endif
extern const AP_HAL::HAL& hal;
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
#define DEFAULT_GYRO_FILTER 20
#define DEFAULT_ACCEL_FILTER 20
#define DEFAULT_STILL_THRESH 2.5f
#elif APM_BUILD_TYPE(APM_BUILD_Rover)
#define DEFAULT_GYRO_FILTER 4
#define DEFAULT_ACCEL_FILTER 10
#define DEFAULT_STILL_THRESH 0.1f
#else
#define DEFAULT_GYRO_FILTER 20
#define DEFAULT_ACCEL_FILTER 20
#define DEFAULT_STILL_THRESH 0.1f
#endif
#define SAMPLE_UNIT 1
#define GYRO_INIT_MAX_DIFF_DPS 0.1f
// Class level parameters
const AP_Param::GroupInfo AP_InertialSensor::var_info[] = {
// 0 was PRODUCT_ID
/*
The following parameter indexes and reserved from previous use
as accel offsets and scaling from before the 16g change in the
PX4 backend:
ACCSCAL : 1
ACCOFFS : 2
MPU6K_FILTER: 4
ACC2SCAL : 5
ACC2OFFS : 6
ACC3SCAL : 8
ACC3OFFS : 9
CALSENSFRAME : 11
*/
// @Param: GYROFFS_X
// @DisplayName: Gyro offsets of X axis
// @Description: Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
// @Param: GYROFFS_Y
// @DisplayName: Gyro offsets of Y axis
// @Description: Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
// @Param: GYROFFS_Z
// @DisplayName: Gyro offsets of Z axis
// @Description: Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("GYROFFS", 3, AP_InertialSensor, _gyro_offset[0], 0),
// @Param: GYR2OFFS_X
// @DisplayName: Gyro2 offsets of X axis
// @Description: Gyro2 sensor offsets of X axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
// @Param: GYR2OFFS_Y
// @DisplayName: Gyro2 offsets of Y axis
// @Description: Gyro2 sensor offsets of Y axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
// @Param: GYR2OFFS_Z
// @DisplayName: Gyro2 offsets of Z axis
// @Description: Gyro2 sensor offsets of Z axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("GYR2OFFS", 7, AP_InertialSensor, _gyro_offset[1], 0),
// @Param: GYR3OFFS_X
// @DisplayName: Gyro3 offsets of X axis
// @Description: Gyro3 sensor offsets of X axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
// @Param: GYR3OFFS_Y
// @DisplayName: Gyro3 offsets of Y axis
// @Description: Gyro3 sensor offsets of Y axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
// @Param: GYR3OFFS_Z
// @DisplayName: Gyro3 offsets of Z axis
// @Description: Gyro3 sensor offsets of Z axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("GYR3OFFS", 10, AP_InertialSensor, _gyro_offset[2], 0),
// @Param: ACCSCAL_X
// @DisplayName: Accelerometer scaling of X axis
// @Description: Accelerometer scaling of X axis. Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
// @Param: ACCSCAL_Y
// @DisplayName: Accelerometer scaling of Y axis
// @Description: Accelerometer scaling of Y axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
// @Param: ACCSCAL_Z
// @DisplayName: Accelerometer scaling of Z axis
// @Description: Accelerometer scaling of Z axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("ACCSCAL", 12, AP_InertialSensor, _accel_scale[0], 0),
// @Param: ACCOFFS_X
// @DisplayName: Accelerometer offsets of X axis
// @Description: Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
// @Param: ACCOFFS_Y
// @DisplayName: Accelerometer offsets of Y axis
// @Description: Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
// @Param: ACCOFFS_Z
// @DisplayName: Accelerometer offsets of Z axis
// @Description: Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("ACCOFFS", 13, AP_InertialSensor, _accel_offset[0], 0),
// @Param: ACC2SCAL_X
// @DisplayName: Accelerometer2 scaling of X axis
// @Description: Accelerometer2 scaling of X axis. Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
// @Param: ACC2SCAL_Y
// @DisplayName: Accelerometer2 scaling of Y axis
// @Description: Accelerometer2 scaling of Y axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
// @Param: ACC2SCAL_Z
// @DisplayName: Accelerometer2 scaling of Z axis
// @Description: Accelerometer2 scaling of Z axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("ACC2SCAL", 14, AP_InertialSensor, _accel_scale[1], 0),
// @Param: ACC2OFFS_X
// @DisplayName: Accelerometer2 offsets of X axis
// @Description: Accelerometer2 offsets of X axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
// @Param: ACC2OFFS_Y
// @DisplayName: Accelerometer2 offsets of Y axis
// @Description: Accelerometer2 offsets of Y axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
// @Param: ACC2OFFS_Z
// @DisplayName: Accelerometer2 offsets of Z axis
// @Description: Accelerometer2 offsets of Z axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("ACC2OFFS", 15, AP_InertialSensor, _accel_offset[1], 0),
// @Param: ACC3SCAL_X
// @DisplayName: Accelerometer3 scaling of X axis
// @Description: Accelerometer3 scaling of X axis. Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
// @Param: ACC3SCAL_Y
// @DisplayName: Accelerometer3 scaling of Y axis
// @Description: Accelerometer3 scaling of Y axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
// @Param: ACC3SCAL_Z
// @DisplayName: Accelerometer3 scaling of Z axis
// @Description: Accelerometer3 scaling of Z axis Calculated during acceleration calibration routine
// @Range: 0.8 1.2
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("ACC3SCAL", 16, AP_InertialSensor, _accel_scale[2], 0),
// @Param: ACC3OFFS_X
// @DisplayName: Accelerometer3 offsets of X axis
// @Description: Accelerometer3 offsets of X axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
// @Param: ACC3OFFS_Y
// @DisplayName: Accelerometer3 offsets of Y axis
// @Description: Accelerometer3 offsets of Y axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
// @Param: ACC3OFFS_Z
// @DisplayName: Accelerometer3 offsets of Z axis
// @Description: Accelerometer3 offsets of Z axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -3.5 3.5
// @User: Advanced
// @Calibration: 1
AP_GROUPINFO("ACC3OFFS", 17, AP_InertialSensor, _accel_offset[2], 0),
// @Param: GYRO_FILTER
// @DisplayName: Gyro filter cutoff frequency
// @Description: Filter cutoff frequency for gyroscopes. This can be set to a lower value to try to cope with very high vibration levels in aircraft. A value of zero means no filtering (not recommended!)
// @Units: Hz
// @Range: 0 256
// @User: Advanced
AP_GROUPINFO("GYRO_FILTER", 18, AP_InertialSensor, _gyro_filter_cutoff, DEFAULT_GYRO_FILTER),
// @Param: ACCEL_FILTER
// @DisplayName: Accel filter cutoff frequency
// @Description: Filter cutoff frequency for accelerometers. This can be set to a lower value to try to cope with very high vibration levels in aircraft. A value of zero means no filtering (not recommended!)
// @Units: Hz
// @Range: 0 256
// @User: Advanced
AP_GROUPINFO("ACCEL_FILTER", 19, AP_InertialSensor, _accel_filter_cutoff, DEFAULT_ACCEL_FILTER),
// @Param: USE
// @DisplayName: Use first IMU for attitude, velocity and position estimates
// @Description: Use first IMU for attitude, velocity and position estimates
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("USE", 20, AP_InertialSensor, _use[0], 1),
// @Param: USE2
// @DisplayName: Use second IMU for attitude, velocity and position estimates
// @Description: Use second IMU for attitude, velocity and position estimates
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("USE2", 21, AP_InertialSensor, _use[1], 1),
// @Param: USE3
// @DisplayName: Use third IMU for attitude, velocity and position estimates
// @Description: Use third IMU for attitude, velocity and position estimates
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("USE3", 22, AP_InertialSensor, _use[2], 1),
// @Param: STILL_THRESH
// @DisplayName: Stillness threshold for detecting if we are moving
// @Description: Threshold to tolerate vibration to determine if vehicle is motionless. This depends on the frame type and if there is a constant vibration due to motors before launch or after landing. Total motionless is about 0.05. Suggested values: Planes/rover use 0.1, multirotors use 1, tradHeli uses 5
// @Range: 0.05 50
// @User: Advanced
AP_GROUPINFO("STILL_THRESH", 23, AP_InertialSensor, _still_threshold, DEFAULT_STILL_THRESH),
// @Param: GYR_CAL
// @DisplayName: Gyro Calibration scheme
// @Description: Conrols when automatic gyro calibration is performed
// @Values: 0:Never, 1:Start-up only
// @User: Advanced
AP_GROUPINFO("GYR_CAL", 24, AP_InertialSensor, _gyro_cal_timing, 1),
// @Param: TRIM_OPTION
// @DisplayName: Accel cal trim option
// @Description: Specifies how the accel cal routine determines the trims
// @User: Advanced
// @Values: 0:Don't adjust the trims,1:Assume first orientation was level,2:Assume ACC_BODYFIX is perfectly aligned to the vehicle
AP_GROUPINFO("TRIM_OPTION", 25, AP_InertialSensor, _trim_option, 1),
// @Param: ACC_BODYFIX
// @DisplayName: Body-fixed accelerometer
// @Description: The body-fixed accelerometer to be used for trim calculation
// @User: Advanced
// @Values: 1:IMU 1,2:IMU 2,3:IMU 3
AP_GROUPINFO("ACC_BODYFIX", 26, AP_InertialSensor, _acc_body_aligned, 2),
// @Param: POS1_X
// @DisplayName: IMU accelerometer X position
// @Description: X position of the first IMU Accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
// @Param: POS1_Y
// @DisplayName: IMU accelerometer Y position
// @Description: Y position of the first IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
// @Param: POS1_Z
// @DisplayName: IMU accelerometer Z position
// @Description: Z position of the first IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("POS1", 27, AP_InertialSensor, _accel_pos[0], 0.0f),
// @Param: POS2_X
// @DisplayName: IMU accelerometer X position
// @Description: X position of the second IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
// @Param: POS2_Y
// @DisplayName: IMU accelerometer Y position
// @Description: Y position of the second IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
// @Param: POS2_Z
// @DisplayName: IMU accelerometer Z position
// @Description: Z position of the second IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("POS2", 28, AP_InertialSensor, _accel_pos[1], 0.0f),
// @Param: POS3_X
// @DisplayName: IMU accelerometer X position
// @Description: X position of the third IMU accelerometer in body frame. Positive X is forward of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -10 10
// @User: Advanced
// @Param: POS3_Y
// @DisplayName: IMU accelerometer Y position
// @Description: Y position of the third IMU accelerometer in body frame. Positive Y is to the right of the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
// @Param: POS3_Z
// @DisplayName: IMU accelerometer Z position
// @Description: Z position of the third IMU accelerometer in body frame. Positive Z is down from the origin. Attention: The IMU should be located as close to the vehicle c.g. as practical so that the value of this parameter is minimised. Failure to do so can result in noisy navigation velocity measurements due to vibration and IMU gyro noise. If the IMU cannot be moved and velocity noise is a problem, a location closer to the IMU can be used as the body frame origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("POS3", 29, AP_InertialSensor, _accel_pos[2], 0.0f),
// @Param: GYR_ID
// @DisplayName: Gyro ID
// @Description: Gyro sensor ID, taking into account its type, bus and instance
// @ReadOnly: True
// @User: Advanced
AP_GROUPINFO("GYR_ID", 30, AP_InertialSensor, _gyro_id[0], 0),
// @Param: GYR2_ID
// @DisplayName: Gyro2 ID
// @Description: Gyro2 sensor ID, taking into account its type, bus and instance
// @ReadOnly: True
// @User: Advanced
AP_GROUPINFO("GYR2_ID", 31, AP_InertialSensor, _gyro_id[1], 0),
// @Param: GYR3_ID
// @DisplayName: Gyro3 ID
// @Description: Gyro3 sensor ID, taking into account its type, bus and instance
// @ReadOnly: True
// @User: Advanced
AP_GROUPINFO("GYR3_ID", 32, AP_InertialSensor, _gyro_id[2], 0),
// @Param: ACC_ID
// @DisplayName: Accelerometer ID
// @Description: Accelerometer sensor ID, taking into account its type, bus and instance
// @ReadOnly: True
// @User: Advanced
AP_GROUPINFO("ACC_ID", 33, AP_InertialSensor, _accel_id[0], 0),
// @Param: ACC2_ID
// @DisplayName: Accelerometer2 ID
// @Description: Accelerometer2 sensor ID, taking into account its type, bus and instance
// @ReadOnly: True
// @User: Advanced
AP_GROUPINFO("ACC2_ID", 34, AP_InertialSensor, _accel_id[1], 0),
// @Param: ACC3_ID
// @DisplayName: Accelerometer3 ID
// @Description: Accelerometer3 sensor ID, taking into account its type, bus and instance
// @ReadOnly: True
// @User: Advanced
AP_GROUPINFO("ACC3_ID", 35, AP_InertialSensor, _accel_id[2], 0),
// @Param: FAST_SAMPLE
// @DisplayName: Fast sampling mask
// @Description: Mask of IMUs to enable fast sampling on, if available
// @User: Advanced
// @Values: 1:FirstIMUOnly,3:FirstAndSecondIMU
// @Bitmask: 0:FirstIMU,1:SecondIMU,2:ThirdIMU
AP_GROUPINFO("FAST_SAMPLE", 36, AP_InertialSensor, _fast_sampling_mask, HAL_DEFAULT_INS_FAST_SAMPLE),
// @Group: NOTCH_
// @Path: ../Filter/NotchFilter.cpp
AP_SUBGROUPINFO(_notch_filter, "NOTCH_", 37, AP_InertialSensor, NotchFilterParams),
// @Group: LOG_
// @Path: ../AP_InertialSensor/BatchSampler.cpp
AP_SUBGROUPINFO(batchsampler, "LOG_", 39, AP_InertialSensor, AP_InertialSensor::BatchSampler),
// @Param: ENABLE_MASK
// @DisplayName: IMU enable mask
// @Description: Bitmask of IMUs to enable. It can be used to prevent startup of specific detected IMUs
// @User: Advanced
// @Values: 1:FirstIMUOnly,3:FirstAndSecondIMU,7:FirstSecondAndThirdIMU,127:AllIMUs
// @Bitmask: 0:FirstIMU,1:SecondIMU,2:ThirdIMU
AP_GROUPINFO("ENABLE_MASK", 40, AP_InertialSensor, _enable_mask, 0x7F),
// @Group: HNTCH_
// @Path: ../Filter/HarmonicNotchFilter.cpp
AP_SUBGROUPINFO(_harmonic_notch_filter, "HNTCH_", 41, AP_InertialSensor, HarmonicNotchFilterParams),
/*
NOTE: parameter indexes have gaps above. When adding new
parameters check for conflicts carefully
*/
AP_GROUPEND
};
AP_InertialSensor *AP_InertialSensor::_singleton = nullptr;
AP_InertialSensor::AP_InertialSensor() :
_board_orientation(ROTATION_NONE),
_log_raw_bit(-1)
{
if (_singleton) {
AP_HAL::panic("Too many inertial sensors");
}
_singleton = this;
AP_Param::setup_object_defaults(this, var_info);
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
_gyro_cal_ok[i] = true;
_accel_max_abs_offsets[i] = 3.5f;
}
for (uint8_t i=0; i<INS_VIBRATION_CHECK_INSTANCES; i++) {
_accel_vibe_floor_filter[i].set_cutoff_frequency(AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ);
_accel_vibe_filter[i].set_cutoff_frequency(AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ);
}
AP_AccelCal::register_client(this);
}
/*
* Get the AP_InertialSensor singleton
*/
AP_InertialSensor *AP_InertialSensor::get_singleton()
{
if (!_singleton) {
_singleton = new AP_InertialSensor();
}
return _singleton;
}
/*
register a new gyro instance
*/
uint8_t AP_InertialSensor::register_gyro(uint16_t raw_sample_rate_hz,
uint32_t id)
{
if (_gyro_count == INS_MAX_INSTANCES) {
AP_HAL::panic("Too many gyros");
}
_gyro_raw_sample_rates[_gyro_count] = raw_sample_rate_hz;
_gyro_over_sampling[_gyro_count] = 1;
_gyro_raw_sampling_multiplier[_gyro_count] = INT16_MAX/radians(2000);
bool saved = _gyro_id[_gyro_count].load();
if (saved && (uint32_t)_gyro_id[_gyro_count] != id) {
// inconsistent gyro id - mark it as needing calibration
_gyro_cal_ok[_gyro_count] = false;
}
_gyro_id[_gyro_count].set((int32_t) id);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (!saved) {
// assume this is the same sensor and save its ID to allow seamless
// transition from when we didn't have the IDs.
_gyro_id[_gyro_count].save();
}
#endif
return _gyro_count++;
}
/*
register a new accel instance
*/
uint8_t AP_InertialSensor::register_accel(uint16_t raw_sample_rate_hz,
uint32_t id)
{
if (_accel_count == INS_MAX_INSTANCES) {
AP_HAL::panic("Too many accels");
}
_accel_raw_sample_rates[_accel_count] = raw_sample_rate_hz;
_accel_over_sampling[_accel_count] = 1;
_accel_raw_sampling_multiplier[_accel_count] = INT16_MAX/(16*GRAVITY_MSS);
bool saved = _accel_id[_accel_count].load();
if (!saved) {
// inconsistent accel id
_accel_id_ok[_accel_count] = false;
} else if ((uint32_t)_accel_id[_accel_count] != id) {
// inconsistent accel id
_accel_id_ok[_accel_count] = false;
} else {
_accel_id_ok[_accel_count] = true;
}
_accel_id[_accel_count].set((int32_t) id);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// assume this is the same sensor and save its ID to allow seamless
// transition from when we didn't have the IDs.
_accel_id_ok[_accel_count] = true;
_accel_id[_accel_count].save();
#endif
return _accel_count++;
}
/*
* Start all backends for gyro and accel measurements. It automatically calls
* detect_backends() if it has not been called already.
*/
void AP_InertialSensor::_start_backends()
{
detect_backends();
for (uint8_t i = 0; i < _backend_count; i++) {
_backends[i]->start();
}
if (_gyro_count == 0 || _accel_count == 0) {
AP_HAL::panic("INS needs at least 1 gyro and 1 accel");
}
// clear IDs for unused sensor instances
for (uint8_t i=get_accel_count(); i<INS_MAX_INSTANCES; i++) {
_accel_id[i].set(0);
}
for (uint8_t i=get_gyro_count(); i<INS_MAX_INSTANCES; i++) {
_gyro_id[i].set(0);
}
}
/* Find the N instance of the backend that has already been successfully detected */
AP_InertialSensor_Backend *AP_InertialSensor::_find_backend(int16_t backend_id, uint8_t instance)
{
assert(_backends_detected);
uint8_t found = 0;
for (uint8_t i = 0; i < _backend_count; i++) {
int16_t id = _backends[i]->get_id();
if (id < 0 || id != backend_id) {
continue;
}
if (instance == found) {
return _backends[i];
} else {
found++;
}
}
return nullptr;
}
bool AP_InertialSensor::set_gyro_window_size(uint16_t size) {
#if HAL_WITH_DSP
_gyro_window_size = size;
// allocate FFT gyro window
for (uint8_t i = 0; i < INS_MAX_INSTANCES; i++) {
for (uint8_t j = 0; j < XYZ_AXIS_COUNT; j++) {
if (!_gyro_window[i][j].set_size(size)) {
gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate window for INS");
// clean up whatever we have currently allocated
for (uint8_t ii = 0; ii <= i; ii++) {
for (uint8_t jj = 0; jj < j; jj++) {
_gyro_window[ii][jj].set_size(0);
_gyro_window_size = 0;
}
}
return false;
}
}
}
#endif
return true;
}
void
AP_InertialSensor::init(uint16_t sample_rate)
{
// remember the sample rate
_sample_rate = sample_rate;
_loop_delta_t = 1.0f / sample_rate;
// we don't allow deltat values greater than 10x the normal loop
// time to be exposed outside of INS. Large deltat values can
// cause divergence of state estimators
_loop_delta_t_max = 10 * _loop_delta_t;
if (_gyro_count == 0 && _accel_count == 0) {
_start_backends();
}
// initialise accel scale if need be. This is needed as we can't
// give non-zero default values for vectors in AP_Param
for (uint8_t i=0; i<get_accel_count(); i++) {
if (_accel_scale[i].get().is_zero()) {
_accel_scale[i].set(Vector3f(1,1,1));
}
}
// calibrate gyros unless gyro calibration has been disabled
if (gyro_calibration_timing() != GYRO_CAL_NEVER) {
init_gyro();
}
_sample_period_usec = 1000*1000UL / _sample_rate;
// establish the baseline time between samples
_delta_time = 0;
_next_sample_usec = 0;
_last_sample_usec = 0;
_have_sample = false;
// initialise IMU batch logging
batchsampler.init();
// the center frequency of the harmonic notch is always taken from the calculated value so that it can be updated
// dynamically, the calculated value is always some multiple of the configured center frequency, so start with the
// configured value
_calculated_harmonic_notch_freq_hz = _harmonic_notch_filter.center_freq_hz();
for (uint8_t i=0; i<get_gyro_count(); i++) {
_gyro_harmonic_notch_filter[i].allocate_filters(_harmonic_notch_filter.harmonics(),
_harmonic_notch_filter.hasOption(HarmonicNotchFilterParams::Options::DoubleNotch));
// initialise default settings, these will be subsequently changed in AP_InertialSensor_Backend::update_gyro()
_gyro_harmonic_notch_filter[i].init(_gyro_raw_sample_rates[i], _calculated_harmonic_notch_freq_hz,
_harmonic_notch_filter.bandwidth_hz(), _harmonic_notch_filter.attenuation_dB());
}
}
bool AP_InertialSensor::_add_backend(AP_InertialSensor_Backend *backend)
{
if (!backend) {
return false;
}
if (_backend_count == INS_MAX_BACKENDS) {
AP_HAL::panic("Too many INS backends");
}
_backends[_backend_count++] = backend;
return true;
}
/*
detect available backends for this board
*/
void
AP_InertialSensor::detect_backends(void)
{
if (_backends_detected) {
return;
}
_backends_detected = true;
#if defined(HAL_CHIBIOS_ARCH_CUBEBLACK)
// special case for CubeBlack, where the IMUs on the isolated
// board could fail on some boards. If the user has INS_USE=1,
// INS_USE2=1 and INS_USE3=0 then force INS_USE3 to 1. This is
// done as users loading past parameter files may end up with
// INS_USE3=0 unintentionally, which is unsafe on these
// boards. For users who really want limited IMUs they will need
// to either use the INS_ENABLE_MASK or set INS_USE2=0 which will
// enable the first IMU without triggering this check
if (_use[0] == 1 && _use[1] == 1 && _use[2] == 0) {
_use[2].set(1);
}
#endif
uint8_t probe_count = 0;
uint8_t enable_mask = uint8_t(_enable_mask.get());
uint8_t found_mask = 0;
/*
use ADD_BACKEND() macro to allow for INS_ENABLE_MASK for enabling/disabling INS backends
*/
#define ADD_BACKEND(x) do { \
if (((1U<<probe_count)&enable_mask) && _add_backend(x)) { \
found_mask |= (1U<<probe_count); \
} \
probe_count++; \
} while (0)
// macro for use by HAL_INS_PROBE_LIST
#define GET_I2C_DEVICE(bus, address) hal.i2c_mgr->get_device(bus, address)
if (_hil_mode) {
ADD_BACKEND(AP_InertialSensor_HIL::detect(*this));
return;
}
#if defined(HAL_INS_PROBE_LIST)
// IMUs defined by IMU lines in hwdef.dat
HAL_INS_PROBE_LIST;
#elif CONFIG_HAL_BOARD == HAL_BOARD_SITL
ADD_BACKEND(AP_InertialSensor_SITL::detect(*this, INS_SITL_SENSOR_A));
ADD_BACKEND(AP_InertialSensor_SITL::detect(*this, INS_SITL_SENSOR_B));
#elif HAL_INS_DEFAULT == HAL_INS_HIL
ADD_BACKEND(AP_InertialSensor_HIL::detect(*this));
#elif AP_FEATURE_BOARD_DETECT
switch (AP_BoardConfig::get_board_type()) {
case AP_BoardConfig::PX4_BOARD_PX4V1:
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_NAME), ROTATION_NONE));
break;
case AP_BoardConfig::PX4_BOARD_PIXHAWK:
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_NAME), ROTATION_ROLL_180));
ADD_BACKEND(AP_InertialSensor_LSM9DS0::probe(*this,
hal.spi->get_device(HAL_INS_LSM9DS0_G_NAME),
hal.spi->get_device(HAL_INS_LSM9DS0_A_NAME),
ROTATION_ROLL_180,
ROTATION_ROLL_180_YAW_270,
ROTATION_PITCH_180));
break;
case AP_BoardConfig::PX4_BOARD_PIXHAWK2:
// older Pixhawk2 boards have the MPU6000 instead of MPU9250
_fast_sampling_mask.set_default(1);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_EXT_NAME), ROTATION_PITCH_180));
ADD_BACKEND(AP_InertialSensor_LSM9DS0::probe(*this,
hal.spi->get_device(HAL_INS_LSM9DS0_EXT_G_NAME),
hal.spi->get_device(HAL_INS_LSM9DS0_EXT_A_NAME),
ROTATION_ROLL_180_YAW_270,
ROTATION_ROLL_180_YAW_90,
ROTATION_ROLL_180_YAW_90));
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_NAME), ROTATION_YAW_270));
// new cubes have ICM20602, ICM20948, ICM20649
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device("icm20602_ext"), ROTATION_ROLL_180_YAW_270));
ADD_BACKEND(AP_InertialSensor_Invensensev2::probe(*this, hal.spi->get_device("icm20948_ext"), ROTATION_PITCH_180));
ADD_BACKEND(AP_InertialSensor_Invensensev2::probe(*this, hal.spi->get_device("icm20948"), ROTATION_YAW_270));
break;
case AP_BoardConfig::PX4_BOARD_FMUV5:
case AP_BoardConfig::PX4_BOARD_FMUV6:
_fast_sampling_mask.set_default(1);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device("icm20689"), ROTATION_NONE));
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device("icm20602"), ROTATION_NONE));
// allow for either BMI055 or BMI088
ADD_BACKEND(AP_InertialSensor_BMI055::probe(*this,
hal.spi->get_device("bmi055_a"),
hal.spi->get_device("bmi055_g"),
ROTATION_ROLL_180_YAW_90));
ADD_BACKEND(AP_InertialSensor_BMI088::probe(*this,
hal.spi->get_device("bmi055_a"),
hal.spi->get_device("bmi055_g"),
ROTATION_ROLL_180_YAW_90));
break;
case AP_BoardConfig::PX4_BOARD_SP01:
_fast_sampling_mask.set_default(1);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_EXT_NAME), ROTATION_NONE));
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_NAME), ROTATION_NONE));
break;
case AP_BoardConfig::PX4_BOARD_PIXHAWK_PRO:
_fast_sampling_mask.set_default(3);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_ICM20608_NAME), ROTATION_ROLL_180_YAW_90));
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_NAME), ROTATION_ROLL_180_YAW_90));
break;
case AP_BoardConfig::PX4_BOARD_PHMINI:
// PHMINI uses ICM20608 on the ACCEL_MAG device and a MPU9250 on the old MPU6000 CS line
_fast_sampling_mask.set_default(3);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_ICM20608_AM_NAME), ROTATION_ROLL_180));
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_NAME), ROTATION_ROLL_180));
break;
case AP_BoardConfig::PX4_BOARD_AUAV21:
// AUAV2.1 uses ICM20608 on the ACCEL_MAG device and a MPU9250 on the old MPU6000 CS line
_fast_sampling_mask.set_default(3);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_ICM20608_AM_NAME), ROTATION_ROLL_180_YAW_90));
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_NAME), ROTATION_ROLL_180_YAW_90));
break;
case AP_BoardConfig::PX4_BOARD_PH2SLIM:
_fast_sampling_mask.set_default(1);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU9250_NAME), ROTATION_YAW_270));
break;
case AP_BoardConfig::PX4_BOARD_AEROFC:
_fast_sampling_mask.set_default(1);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU6500_NAME), ROTATION_YAW_270));
break;
case AP_BoardConfig::PX4_BOARD_MINDPXV2:
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU6500_NAME), ROTATION_NONE));
ADD_BACKEND(AP_InertialSensor_LSM9DS0::probe(*this,
hal.spi->get_device(HAL_INS_LSM9DS0_G_NAME),
hal.spi->get_device(HAL_INS_LSM9DS0_A_NAME),
ROTATION_YAW_90,
ROTATION_YAW_90,
ROTATION_YAW_90));
break;
case AP_BoardConfig::VRX_BOARD_BRAIN54:
_fast_sampling_mask.set_default(7);
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_NAME), ROTATION_YAW_180));
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_EXT_NAME), ROTATION_YAW_180));
#ifdef HAL_INS_MPU60x0_IMU_NAME
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_IMU_NAME), ROTATION_YAW_180));
#endif
break;
case AP_BoardConfig::VRX_BOARD_BRAIN51:
case AP_BoardConfig::VRX_BOARD_BRAIN52:
case AP_BoardConfig::VRX_BOARD_BRAIN52E:
case AP_BoardConfig::VRX_BOARD_CORE10:
case AP_BoardConfig::VRX_BOARD_UBRAIN51:
case AP_BoardConfig::VRX_BOARD_UBRAIN52:
ADD_BACKEND(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_NAME), ROTATION_YAW_180));
break;
case AP_BoardConfig::PX4_BOARD_PCNC1:
_add_backend(AP_InertialSensor_Invensense::probe(*this, hal.spi->get_device(HAL_INS_MPU60x0_NAME), ROTATION_ROLL_180));
break;
default:
break;
}
#elif HAL_INS_DEFAULT == HAL_INS_NONE
// no INS device
#else
#error Unrecognised HAL_INS_TYPE setting
#endif
if (_backend_count == 0) {
AP_BoardConfig::config_error("INS: unable to initialise driver");
}
}
// Armed, Copter, PixHawk:
// ins_periodic: 57500 events, 0 overruns, 208754us elapsed, 3us avg, min 1us max 218us 40.662us rms
void AP_InertialSensor::periodic()
{
batchsampler.periodic();
}
/*
_calculate_trim - calculates the x and y trim angles. The
accel_sample must be correctly scaled, offset and oriented for the
board
*/
bool AP_InertialSensor::_calculate_trim(const Vector3f &accel_sample, float& trim_roll, float& trim_pitch)
{
trim_pitch = atan2f(accel_sample.x, norm(accel_sample.y, accel_sample.z));
trim_roll = atan2f(-accel_sample.y, -accel_sample.z);
if (fabsf(trim_roll) > radians(10) ||
fabsf(trim_pitch) > radians(10)) {
hal.console->printf("trim over maximum of 10 degrees\n");
return false;
}
hal.console->printf("Trim OK: roll=%.2f pitch=%.2f\n",
(double)degrees(trim_roll),
(double)degrees(trim_pitch));
return true;
}
void
AP_InertialSensor::init_gyro()
{
_init_gyro();
// save calibration
_save_gyro_calibration();
}
// accelerometer clipping reporting
uint32_t AP_InertialSensor::get_accel_clip_count(uint8_t instance) const
{
if (instance >= get_accel_count()) {
return 0;
}
return _accel_clip_count[instance];
}
// get_gyro_health_all - return true if all gyros are healthy
bool AP_InertialSensor::get_gyro_health_all(void) const
{
for (uint8_t i=0; i<get_gyro_count(); i++) {
if (!get_gyro_health(i)) {
return false;
}
}
// return true if we have at least one gyro
return (get_gyro_count() > 0);
}
// gyro_calibration_ok_all - returns true if all gyros were calibrated successfully
bool AP_InertialSensor::gyro_calibrated_ok_all() const
{
for (uint8_t i=0; i<get_gyro_count(); i++) {
if (!gyro_calibrated_ok(i)) {
return false;
}
}
for (uint8_t i=get_gyro_count(); i<INS_MAX_INSTANCES; i++) {
if (_gyro_id[i] != 0) {
// missing gyro
return false;
}
}
return (get_gyro_count() > 0);
}
// return true if gyro instance should be used (must be healthy and have it's use parameter set to 1)
bool AP_InertialSensor::use_gyro(uint8_t instance) const
{
if (instance >= INS_MAX_INSTANCES) {
return false;
}
return (get_gyro_health(instance) && _use[instance]);
}
// get_accel_health_all - return true if all accels are healthy
bool AP_InertialSensor::get_accel_health_all(void) const
{
for (uint8_t i=0; i<get_accel_count(); i++) {
if (!get_accel_health(i)) {
return false;
}
}
// return true if we have at least one accel
return (get_accel_count() > 0);
}
/*
calculate the trim_roll and trim_pitch. This is used for redoing the
trim without needing a full accel cal
*/
bool AP_InertialSensor::calibrate_trim(float &trim_roll, float &trim_pitch)
{
Vector3f level_sample;
// exit immediately if calibration is already in progress
if (_calibrating) {
return false;
}
_calibrating = true;
const uint8_t update_dt_milliseconds = (uint8_t)(1000.0f/get_sample_rate()+0.5f);
// wait 100ms for ins filter to rise
for (uint8_t k=0; k<100/update_dt_milliseconds; k++) {
wait_for_sample();
update();
hal.scheduler->delay(update_dt_milliseconds);
}
uint32_t num_samples = 0;
while (num_samples < 400/update_dt_milliseconds) {
wait_for_sample();
// read samples from ins
update();
// capture sample
Vector3f samp;
samp = get_accel(0);
level_sample += samp;
if (!get_accel_health(0)) {
goto failed;
}
hal.scheduler->delay(update_dt_milliseconds);
num_samples++;
}
level_sample /= num_samples;
if (!_calculate_trim(level_sample, trim_roll, trim_pitch)) {
goto failed;
}
_calibrating = false;
return true;
failed:
_calibrating = false;
return false;
}
/*
check if the accelerometers are calibrated in 3D and that current number of accels matched number when calibrated
*/
bool AP_InertialSensor::accel_calibrated_ok_all() const
{
// calibration is not applicable for HIL mode
if (_hil_mode) {
return true;
}
// check each accelerometer has offsets saved
for (uint8_t i=0; i<get_accel_count(); i++) {
if (!_accel_id_ok[i]) {
return false;
}
// exactly 0.0 offset is extremely unlikely
if (_accel_offset[i].get().is_zero()) {
return false;
}
// zero scaling also indicates not calibrated
if (_accel_scale[i].get().is_zero()) {
return false;
}
}
for (uint8_t i=get_accel_count(); i<INS_MAX_INSTANCES; i++) {
if (_accel_id[i] != 0) {
// missing accel
return false;
}
}
// check calibrated accels matches number of accels (no unused accels should have offsets or scaling)
if (get_accel_count() < INS_MAX_INSTANCES) {
for (uint8_t i=get_accel_count(); i<INS_MAX_INSTANCES; i++) {
const Vector3f &scaling = _accel_scale[i].get();
bool have_scaling = (!is_zero(scaling.x) && !is_equal(scaling.x,1.0f)) || (!is_zero(scaling.y) && !is_equal(scaling.y,1.0f)) || (!is_zero(scaling.z) && !is_equal(scaling.z,1.0f));
bool have_offsets = !_accel_offset[i].get().is_zero();
if (have_scaling || have_offsets) {
return false;
}
}
}
// if we got this far the accelerometers must have been calibrated
return true;
}
// return true if accel instance should be used (must be healthy and have it's use parameter set to 1)
bool AP_InertialSensor::use_accel(uint8_t instance) const
{
if (instance >= INS_MAX_INSTANCES) {
return false;
}
return (get_accel_health(instance) && _use[instance]);
}
void
AP_InertialSensor::_init_gyro()
{
uint8_t num_gyros = MIN(get_gyro_count(), INS_MAX_INSTANCES);
Vector3f last_average[INS_MAX_INSTANCES], best_avg[INS_MAX_INSTANCES];
Vector3f new_gyro_offset[INS_MAX_INSTANCES];
float best_diff[INS_MAX_INSTANCES];
bool converged[INS_MAX_INSTANCES];
// exit immediately if calibration is already in progress
if (_calibrating) {
return;
}
// record we are calibrating
_calibrating = true;
// flash leds to tell user to keep the IMU still
AP_Notify::flags.initialising = true;
// cold start
hal.console->printf("Init Gyro");
/*
we do the gyro calibration with no board rotation. This avoids
having to rotate readings during the calibration
*/
enum Rotation saved_orientation = _board_orientation;
_board_orientation = ROTATION_NONE;
// remove existing gyro offsets
for (uint8_t k=0; k<num_gyros; k++) {
_gyro_offset[k].set(Vector3f());
new_gyro_offset[k].zero();
best_diff[k] = -1.f;
last_average[k].zero();
converged[k] = false;
}
for(int8_t c = 0; c < 5; c++) {
hal.scheduler->delay(5);
update();
}
// the strategy is to average 50 points over 0.5 seconds, then do it
// again and see if the 2nd average is within a small margin of
// the first
uint8_t num_converged = 0;
// we try to get a good calibration estimate for up to 30 seconds
// if the gyros are stable, we should get it in 1 second
for (int16_t j = 0; j <= 30*4 && num_converged < num_gyros; j++) {
Vector3f gyro_sum[INS_MAX_INSTANCES], gyro_avg[INS_MAX_INSTANCES], gyro_diff[INS_MAX_INSTANCES];
Vector3f accel_start;
float diff_norm[INS_MAX_INSTANCES];
uint8_t i;
EXPECT_DELAY_MS(1000);
memset(diff_norm, 0, sizeof(diff_norm));
hal.console->printf("*");
for (uint8_t k=0; k<num_gyros; k++) {
gyro_sum[k].zero();
}
accel_start = get_accel(0);
for (i=0; i<50; i++) {
update();
for (uint8_t k=0; k<num_gyros; k++) {
gyro_sum[k] += get_gyro(k);
}
hal.scheduler->delay(5);
}
Vector3f accel_diff = get_accel(0) - accel_start;
if (accel_diff.length() > 0.2f) {
// the accelerometers changed during the gyro sum. Skip
// this sample. This copes with doing gyro cal on a
// steadily moving platform. The value 0.2 corresponds
// with around 5 degrees/second of rotation.
continue;
}
for (uint8_t k=0; k<num_gyros; k++) {
gyro_avg[k] = gyro_sum[k] / i;
gyro_diff[k] = last_average[k] - gyro_avg[k];
diff_norm[k] = gyro_diff[k].length();
}
for (uint8_t k=0; k<num_gyros; k++) {
if (best_diff[k] < 0) {
best_diff[k] = diff_norm[k];
best_avg[k] = gyro_avg[k];
} else if (gyro_diff[k].length() < ToRad(GYRO_INIT_MAX_DIFF_DPS)) {
// we want the average to be within 0.1 bit, which is 0.04 degrees/s
last_average[k] = (gyro_avg[k] * 0.5f) + (last_average[k] * 0.5f);
if (!converged[k] || last_average[k].length() < new_gyro_offset[k].length()) {
new_gyro_offset[k] = last_average[k];
}
if (!converged[k]) {
converged[k] = true;
num_converged++;
}
} else if (diff_norm[k] < best_diff[k]) {
best_diff[k] = diff_norm[k];
best_avg[k] = (gyro_avg[k] * 0.5f) + (last_average[k] * 0.5f);
}
last_average[k] = gyro_avg[k];
}
}
// we've kept the user waiting long enough - use the best pair we
// found so far
hal.console->printf("\n");
for (uint8_t k=0; k<num_gyros; k++) {
if (!converged[k]) {
hal.console->printf("gyro[%u] did not converge: diff=%f dps (expected < %f)\n",
(unsigned)k,
(double)ToDeg(best_diff[k]),
(double)GYRO_INIT_MAX_DIFF_DPS);
_gyro_offset[k] = best_avg[k];
// flag calibration as failed for this gyro
_gyro_cal_ok[k] = false;
} else {
_gyro_cal_ok[k] = true;
_gyro_offset[k] = new_gyro_offset[k];
}
}
// restore orientation
_board_orientation = saved_orientation;
// record calibration complete
_calibrating = false;
// stop flashing leds
AP_Notify::flags.initialising = false;
}
// save parameters to eeprom
void AP_InertialSensor::_save_gyro_calibration()
{
for (uint8_t i=0; i<_gyro_count; i++) {
_gyro_offset[i].save();
_gyro_id[i].save();
}
for (uint8_t i=_gyro_count; i<INS_MAX_INSTANCES; i++) {
_gyro_offset[i].set_and_save(Vector3f());
_gyro_id[i].set_and_save(0);
}
}
/*
update gyro and accel values from backends
*/
void AP_InertialSensor::update(void)
{
// during initialisation update() may be called without
// wait_for_sample(), and a wait is implied
wait_for_sample();
if (!_hil_mode) {
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
// mark sensors unhealthy and let update() in each backend
// mark them healthy via _publish_gyro() and
// _publish_accel()
_gyro_healthy[i] = false;
_accel_healthy[i] = false;
_delta_velocity_valid[i] = false;
_delta_angle_valid[i] = false;
}
for (uint8_t i=0; i<_backend_count; i++) {
_backends[i]->update();
}
// clear accumulators
for (uint8_t i = 0; i < INS_MAX_INSTANCES; i++) {
_delta_velocity_acc[i].zero();
_delta_velocity_acc_dt[i] = 0;
_delta_angle_acc[i].zero();
_delta_angle_acc_dt[i] = 0;
}
if (!_startup_error_counts_set) {
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
_accel_startup_error_count[i] = _accel_error_count[i];
_gyro_startup_error_count[i] = _gyro_error_count[i];
}
if (_startup_ms == 0) {
_startup_ms = AP_HAL::millis();
} else if (AP_HAL::millis()-_startup_ms > 2000) {
_startup_error_counts_set = true;
}
}
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_accel_error_count[i] < _accel_startup_error_count[i]) {
_accel_startup_error_count[i] = _accel_error_count[i];
}
if (_gyro_error_count[i] < _gyro_startup_error_count[i]) {
_gyro_startup_error_count[i] = _gyro_error_count[i];
}
}
// adjust health status if a sensor has a non-zero error count
// but another sensor doesn't.
bool have_zero_accel_error_count = false;
bool have_zero_gyro_error_count = false;
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_accel_healthy[i] && _accel_error_count[i] <= _accel_startup_error_count[i]) {
have_zero_accel_error_count = true;
}
if (_gyro_healthy[i] && _gyro_error_count[i] <= _gyro_startup_error_count[i]) {
have_zero_gyro_error_count = true;
}
}
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_gyro_healthy[i] && _gyro_error_count[i] > _gyro_startup_error_count[i] && have_zero_gyro_error_count) {
// we prefer not to use a gyro that has had errors
_gyro_healthy[i] = false;
}
if (_accel_healthy[i] && _accel_error_count[i] > _accel_startup_error_count[i] && have_zero_accel_error_count) {
// we prefer not to use a accel that has had errors
_accel_healthy[i] = false;
}
}
// set primary to first healthy accel and gyro
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_gyro_healthy[i] && _use[i]) {
_primary_gyro = i;
break;
}
}
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_accel_healthy[i] && _use[i]) {
_primary_accel = i;
break;
}
}
}
_last_update_usec = AP_HAL::micros();
_have_sample = false;
}
/*
wait for a sample to be available. This is the function that
determines the timing of the main loop in ardupilot.
Ideally this function would return at exactly the rate given by the
sample_rate argument given to AP_InertialSensor::init().
The key output of this function is _delta_time, which is the time
over which the gyro and accel integration will happen for this
sample. We want that to be a constant time if possible, but if
delays occur we need to cope with them. The long term sum of
_delta_time should be exactly equal to the wall clock elapsed time
*/
void AP_InertialSensor::wait_for_sample(void)
{
if (_have_sample) {
// the user has called wait_for_sample() again without
// consuming the sample with update()
return;
}
uint32_t now = AP_HAL::micros();
if (_next_sample_usec == 0 && _delta_time <= 0) {
// this is the first call to wait_for_sample()
_last_sample_usec = now - _sample_period_usec;
_next_sample_usec = now + _sample_period_usec;
goto check_sample;
}
// see how long it is till the next sample is due
if (_next_sample_usec - now <=_sample_period_usec) {
// we're ahead on time, schedule next sample at expected period
uint32_t wait_usec = _next_sample_usec - now;
hal.scheduler->delay_microseconds_boost(wait_usec);
uint32_t now2 = AP_HAL::micros();
if (now2+100 < _next_sample_usec) {
timing_printf("shortsleep %u\n", (unsigned)(_next_sample_usec-now2));
}
if (now2 > _next_sample_usec+400) {
timing_printf("longsleep %u wait_usec=%u\n",
(unsigned)(now2-_next_sample_usec),
(unsigned)wait_usec);
}
_next_sample_usec += _sample_period_usec;
} else if (now - _next_sample_usec < _sample_period_usec/8) {
// we've overshot, but only by a small amount, keep on
// schedule with no delay
timing_printf("overshoot1 %u\n", (unsigned)(now-_next_sample_usec));
_next_sample_usec += _sample_period_usec;
} else {
// we've overshot by a larger amount, re-zero scheduling with
// no delay
timing_printf("overshoot2 %u\n", (unsigned)(now-_next_sample_usec));
_next_sample_usec = now + _sample_period_usec;
}
check_sample:
if (!_hil_mode) {
// now we wait until we have the gyro and accel samples we need
uint8_t gyro_available_mask = 0;
uint8_t accel_available_mask = 0;
uint32_t wait_counter = 0;
while (true) {
for (uint8_t i=0; i<_backend_count; i++) {
// this is normally a nop, but can be used by backends
// that don't accumulate samples on a timer
_backends[i]->accumulate();
}
for (uint8_t i=0; i<_gyro_count; i++) {
if (_new_gyro_data[i]) {
const uint8_t imask = (1U<<i);
gyro_available_mask |= imask;
if (_use[i]) {
_gyro_wait_mask |= imask;
} else {
_gyro_wait_mask &= ~imask;
}
}
}
for (uint8_t i=0; i<_accel_count; i++) {
if (_new_accel_data[i]) {
const uint8_t imask = (1U<<i);
accel_available_mask |= imask;
if (_use[i]) {
_accel_wait_mask |= imask;
} else {
_accel_wait_mask &= ~imask;
}
}
}
// we wait for up to 800us to get all of the required
// accel and gyro samples. After that we accept at least
// one of each
if (wait_counter < 7) {
if (gyro_available_mask &&
((gyro_available_mask & _gyro_wait_mask) == _gyro_wait_mask) &&
accel_available_mask &&
((accel_available_mask & _accel_wait_mask) == _accel_wait_mask)) {
break;
}
} else {
if (gyro_available_mask && accel_available_mask) {
// reset the wait mask so we don't keep delaying
// for a dead IMU on the next loop. As soon as it
// comes back we will start waiting on it again
_gyro_wait_mask &= gyro_available_mask;
_accel_wait_mask &= accel_available_mask;
break;
}
}
hal.scheduler->delay_microseconds_boost(100);
wait_counter++;
}
}
now = AP_HAL::micros();
if (_hil_mode && _hil.delta_time > 0) {
_delta_time = _hil.delta_time;
_hil.delta_time = 0;
} else {
_delta_time = (now - _last_sample_usec) * 1.0e-6f;
}
_last_sample_usec = now;
#if 0
{
static uint64_t delta_time_sum;
static uint16_t counter;
if (delta_time_sum == 0) {
delta_time_sum = _sample_period_usec;
}
delta_time_sum += _delta_time * 1.0e6f;
if (counter++ == 400) {
counter = 0;
hal.console->printf("now=%lu _delta_time_sum=%lu diff=%ld\n",
(unsigned long)now,
(unsigned long)delta_time_sum,
(long)(now - delta_time_sum));
}
}
#endif
_have_sample = true;
}
/*
get delta angles
*/
bool AP_InertialSensor::get_delta_angle(uint8_t i, Vector3f &delta_angle) const
{
if (_delta_angle_valid[i]) {
delta_angle = _delta_angle[i];
return true;
} else if (get_gyro_health(i)) {
// provide delta angle from raw gyro, so we use the same code
// at higher level
delta_angle = get_gyro(i) * get_delta_time();
return true;
}
return false;
}
/*
get delta velocity if available
*/
bool AP_InertialSensor::get_delta_velocity(uint8_t i, Vector3f &delta_velocity) const
{
if (_delta_velocity_valid[i]) {
delta_velocity = _delta_velocity[i];
return true;
} else if (get_accel_health(i)) {
delta_velocity = get_accel(i) * get_delta_time();
return true;
}
return false;
}
/*
return delta_time for the delta_velocity
*/
float AP_InertialSensor::get_delta_velocity_dt(uint8_t i) const
{
float ret;
if (_delta_velocity_valid[i]) {
ret = _delta_velocity_dt[i];
} else {
ret = get_delta_time();
}
ret = MIN(ret, _loop_delta_t_max);
return ret;
}
/*
return delta_time for the delta_angle
*/
float AP_InertialSensor::get_delta_angle_dt(uint8_t i) const
{
float ret;
if (_delta_angle_valid[i] && _delta_angle_dt[i] > 0) {
ret = _delta_angle_dt[i];
} else {
ret = get_delta_time();
}
ret = MIN(ret, _loop_delta_t_max);
return ret;
}
/*
support for setting accel and gyro vectors, for use by HIL
*/
void AP_InertialSensor::set_accel(uint8_t instance, const Vector3f &accel)
{
if (_accel_count == 0) {
// we haven't initialised yet
return;
}
if (instance < INS_MAX_INSTANCES) {
_accel[instance] = accel;
_accel_healthy[instance] = true;
if (_accel_count <= instance) {
_accel_count = instance+1;
}
if (!_accel_healthy[_primary_accel]) {
_primary_accel = instance;
}
}
}
void AP_InertialSensor::set_gyro(uint8_t instance, const Vector3f &gyro)
{
if (_gyro_count == 0) {
// we haven't initialised yet
return;
}
if (instance < INS_MAX_INSTANCES) {
_gyro[instance] = gyro;
_gyro_healthy[instance] = true;
if (_gyro_count <= instance) {
_gyro_count = instance+1;
_gyro_cal_ok[instance] = true;
}
if (!_accel_healthy[_primary_accel]) {
_primary_accel = instance;
}
}
}
/*
set delta time for next ins.update()
*/
void AP_InertialSensor::set_delta_time(float delta_time)
{
_hil.delta_time = delta_time;
}
/*
set delta velocity for next update
*/
void AP_InertialSensor::set_delta_velocity(uint8_t instance, float deltavt, const Vector3f &deltav)
{
if (instance < INS_MAX_INSTANCES) {
_delta_velocity_valid[instance] = true;
_delta_velocity[instance] = deltav;
_delta_velocity_dt[instance] = deltavt;
}
}
/*
set delta angle for next update
*/
void AP_InertialSensor::set_delta_angle(uint8_t instance, const Vector3f &deltaa, float deltaat)
{
if (instance < INS_MAX_INSTANCES) {
_delta_angle_valid[instance] = true;
_delta_angle[instance] = deltaa;
_delta_angle_dt[instance] = deltaat;
}
}
/*
* Get an AuxiliaryBus of N @instance of backend identified by @backend_id
*/
AuxiliaryBus *AP_InertialSensor::get_auxiliary_bus(int16_t backend_id, uint8_t instance)
{
detect_backends();
AP_InertialSensor_Backend *backend = _find_backend(backend_id, instance);
if (backend == nullptr) {
return nullptr;
}
return backend->get_auxiliary_bus();
}
// calculate vibration levels and check for accelerometer clipping (called by a backends)
void AP_InertialSensor::calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt)
{
// check for clipping
if (_backends[instance] == nullptr) {
return;
}
if (fabsf(accel.x) > _backends[instance]->get_clip_limit() ||
fabsf(accel.y) > _backends[instance]->get_clip_limit() ||
fabsf(accel.z) > _backends[instance]->get_clip_limit()) {
_accel_clip_count[instance]++;
}
// calculate vibration levels
if (instance < INS_VIBRATION_CHECK_INSTANCES) {
// filter accel at 5hz
Vector3f accel_filt = _accel_vibe_floor_filter[instance].apply(accel, dt);
// calc difference from this sample and 5hz filtered value, square and filter at 2hz
Vector3f accel_diff = (accel - accel_filt);
accel_diff.x *= accel_diff.x;
accel_diff.y *= accel_diff.y;
accel_diff.z *= accel_diff.z;
_accel_vibe_filter[instance].apply(accel_diff, dt);
}
}
// peak hold detector for slower mechanisms to detect spikes
void AP_InertialSensor::set_accel_peak_hold(uint8_t instance, const Vector3f &accel)
{
if (instance != _primary_accel) {
// we only record for primary accel
return;
}
uint32_t now = AP_HAL::millis();
// negative x peak(min) hold detector
if (accel.x < _peak_hold_state.accel_peak_hold_neg_x ||
_peak_hold_state.accel_peak_hold_neg_x_age <= now) {
_peak_hold_state.accel_peak_hold_neg_x = accel.x;
_peak_hold_state.accel_peak_hold_neg_x_age = now + AP_INERTIAL_SENSOR_ACCEL_PEAK_DETECT_TIMEOUT_MS;
}
}
// retrieve latest calculated vibration levels
Vector3f AP_InertialSensor::get_vibration_levels(uint8_t instance) const
{
Vector3f vibe;
if (instance < INS_VIBRATION_CHECK_INSTANCES) {
vibe = _accel_vibe_filter[instance].get();
vibe.x = safe_sqrt(vibe.x);
vibe.y = safe_sqrt(vibe.y);
vibe.z = safe_sqrt(vibe.z);
}
return vibe;
}
// check for vibration movement. Return true if all axis show nearly zero movement
bool AP_InertialSensor::is_still()
{
Vector3f vibe = get_vibration_levels();
return (vibe.x < _still_threshold) &&
(vibe.y < _still_threshold) &&
(vibe.z < _still_threshold);
}
// initialise and register accel calibrator
// called during the startup of accel cal
void AP_InertialSensor::acal_init()
{
// NOTE: these objects are never deallocated because the pre-arm checks force a reboot
if (_acal == nullptr) {
_acal = new AP_AccelCal;
}
if (_accel_calibrator == nullptr) {
_accel_calibrator = new AccelCalibrator[INS_MAX_INSTANCES];
}
}
// update accel calibrator
void AP_InertialSensor::acal_update()
{
if(_acal == nullptr) {
return;
}
EXPECT_DELAY_MS(20000);
_acal->update();
if (hal.util->get_soft_armed() && _acal->get_status() != ACCEL_CAL_NOT_STARTED) {
_acal->cancel();
}
}
// Update the harmonic notch frequency
void AP_InertialSensor::update_harmonic_notch_freq_hz(float scaled_freq) {
// protect against zero as the scaled frequency
if (is_positive(scaled_freq)) {
_calculated_harmonic_notch_freq_hz = scaled_freq;
}
}
/*
set and save accelerometer bias along with trim calculation
*/
void AP_InertialSensor::_acal_save_calibrations()
{
Vector3f bias, gain;
for (uint8_t i=0; i<_accel_count; i++) {
if (_accel_calibrator[i].get_status() == ACCEL_CAL_SUCCESS) {
_accel_calibrator[i].get_calibration(bias, gain);
_accel_offset[i].set_and_save(bias);
_accel_scale[i].set_and_save(gain);
_accel_id[i].save();
_accel_id_ok[i] = true;
} else {
_accel_offset[i].set_and_save(Vector3f());
_accel_scale[i].set_and_save(Vector3f());
}
}
// clear any unused accels
for (uint8_t i=_accel_count; i<INS_MAX_INSTANCES; i++) {
_accel_id[i].set_and_save(0);
_accel_offset[i].set_and_save(Vector3f());
_accel_scale[i].set_and_save(Vector3f());
}
Vector3f aligned_sample;
Vector3f misaligned_sample;
switch(_trim_option) {
case 0:
break;
case 1:
// The first level step of accel cal will be taken as gnd truth,
// i.e. trim will be set as per the output of primary accel from the level step
get_primary_accel_cal_sample_avg(0,aligned_sample);
_trim_pitch = atan2f(aligned_sample.x, norm(aligned_sample.y, aligned_sample.z));
_trim_roll = atan2f(-aligned_sample.y, -aligned_sample.z);
_new_trim = true;
break;
case 2:
// Reference accel is truth, in this scenario there is a reference accel
// as mentioned in ACC_BODY_ALIGNED
if (get_primary_accel_cal_sample_avg(0,misaligned_sample) && get_fixed_mount_accel_cal_sample(0,aligned_sample)) {
// determine trim from aligned sample vs misaligned sample
Vector3f cross = (misaligned_sample%aligned_sample);
float dot = (misaligned_sample*aligned_sample);
Quaternion q(safe_sqrt(sq(misaligned_sample.length())*sq(aligned_sample.length()))+dot, cross.x, cross.y, cross.z);
q.normalize();
_trim_roll = q.get_euler_roll();
_trim_pitch = q.get_euler_pitch();
_new_trim = true;
}
break;
default:
_new_trim = false;
/* no break */
}
if (fabsf(_trim_roll) > radians(10) ||
fabsf(_trim_pitch) > radians(10)) {
hal.console->printf("ERR: Trim over maximum of 10 degrees!!");
_new_trim = false; //we have either got faulty level during acal or highly misaligned accelerometers
}
_accel_cal_requires_reboot = true;
}
void AP_InertialSensor::_acal_event_failure()
{
for (uint8_t i=0; i<_accel_count; i++) {
_accel_offset[i].set_and_notify(Vector3f(0,0,0));
_accel_scale[i].set_and_notify(Vector3f(1,1,1));
}
}
/*
Returns true if new valid trim values are available and passes them to reference vars
*/
bool AP_InertialSensor::get_new_trim(float& trim_roll, float &trim_pitch)
{
if (_new_trim) {
trim_roll = _trim_roll;
trim_pitch = _trim_pitch;
_new_trim = false;
return true;
}
return false;
}
/*
Returns body fixed accelerometer level data averaged during accel calibration's first step
*/
bool AP_InertialSensor::get_fixed_mount_accel_cal_sample(uint8_t sample_num, Vector3f& ret) const
{
if (_accel_count <= (_acc_body_aligned-1) || _accel_calibrator[2].get_status() != ACCEL_CAL_SUCCESS || sample_num>=_accel_calibrator[2].get_num_samples_collected()) {
return false;
}
_accel_calibrator[_acc_body_aligned-1].get_sample_corrected(sample_num, ret);
if (_board_orientation == ROTATION_CUSTOM && _custom_rotation) {
ret = *_custom_rotation * ret;
} else {
ret.rotate(_board_orientation);
}
return true;
}
/*
Returns Primary accelerometer level data averaged during accel calibration's first step
*/
bool AP_InertialSensor::get_primary_accel_cal_sample_avg(uint8_t sample_num, Vector3f& ret) const
{
uint8_t count = 0;
Vector3f avg = Vector3f(0,0,0);
for (uint8_t i=0; i<MIN(_accel_count,2); i++) {
if (_accel_calibrator[i].get_status() != ACCEL_CAL_SUCCESS || sample_num>=_accel_calibrator[i].get_num_samples_collected()) {
continue;
}
Vector3f sample;
_accel_calibrator[i].get_sample_corrected(sample_num, sample);
avg += sample;
count++;
}
if (count == 0) {
return false;
}
avg /= count;
ret = avg;
if (_board_orientation == ROTATION_CUSTOM && _custom_rotation) {
ret = *_custom_rotation * ret;
} else {
ret.rotate(_board_orientation);
}
return true;
}
/*
perform a simple 1D accel calibration, returning mavlink result code
*/
MAV_RESULT AP_InertialSensor::simple_accel_cal()
{
uint8_t num_accels = MIN(get_accel_count(), INS_MAX_INSTANCES);
Vector3f last_average[INS_MAX_INSTANCES];
Vector3f new_accel_offset[INS_MAX_INSTANCES];
Vector3f saved_offsets[INS_MAX_INSTANCES];
Vector3f saved_scaling[INS_MAX_INSTANCES];
bool converged[INS_MAX_INSTANCES];
const float accel_convergence_limit = 0.05;
Vector3f rotated_gravity(0, 0, -GRAVITY_MSS);
// exit immediately if calibration is already in progress
if (_calibrating) {
return MAV_RESULT_TEMPORARILY_REJECTED;
}
EXPECT_DELAY_MS(20000);
// record we are calibrating
_calibrating = true;
// flash leds to tell user to keep the IMU still
AP_Notify::flags.initialising = true;
hal.console->printf("Simple accel cal");
/*
we do the accel calibration with no board rotation. This avoids
having to rotate readings during the calibration
*/
enum Rotation saved_orientation = _board_orientation;
_board_orientation = ROTATION_NONE;
// get the rotated gravity vector which will need to be applied to the offsets
rotated_gravity.rotate_inverse(saved_orientation);
// save existing accel offsets
for (uint8_t k=0; k<num_accels; k++) {
saved_offsets[k] = _accel_offset[k];
saved_scaling[k] = _accel_scale[k];
}
// remove existing accel offsets and scaling
for (uint8_t k=0; k<num_accels; k++) {
_accel_offset[k].set(Vector3f());
_accel_scale[k].set(Vector3f(1,1,1));
new_accel_offset[k].zero();
last_average[k].zero();
converged[k] = false;
}
for (uint8_t c = 0; c < 5; c++) {
hal.scheduler->delay(5);
update();
}
// the strategy is to average 50 points over 0.5 seconds, then do it
// again and see if the 2nd average is within a small margin of
// the first
uint8_t num_converged = 0;
// we try to get a good calibration estimate for up to 10 seconds
// if the accels are stable, we should get it in 1 second
for (int16_t j = 0; j <= 10*4 && num_converged < num_accels; j++) {
Vector3f accel_sum[INS_MAX_INSTANCES], accel_avg[INS_MAX_INSTANCES], accel_diff[INS_MAX_INSTANCES];
float diff_norm[INS_MAX_INSTANCES];
uint8_t i;
memset(diff_norm, 0, sizeof(diff_norm));
hal.console->printf("*");
for (uint8_t k=0; k<num_accels; k++) {
accel_sum[k].zero();
}
for (i=0; i<50; i++) {
update();
for (uint8_t k=0; k<num_accels; k++) {
accel_sum[k] += get_accel(k);
}
hal.scheduler->delay(5);
}
for (uint8_t k=0; k<num_accels; k++) {
accel_avg[k] = accel_sum[k] / i;
accel_diff[k] = last_average[k] - accel_avg[k];
diff_norm[k] = accel_diff[k].length();
}
for (uint8_t k=0; k<num_accels; k++) {
if (j > 0 && diff_norm[k] < accel_convergence_limit) {
last_average[k] = (accel_avg[k] * 0.5f) + (last_average[k] * 0.5f);
if (!converged[k] || last_average[k].length() < new_accel_offset[k].length()) {
new_accel_offset[k] = last_average[k];
}
if (!converged[k]) {
converged[k] = true;
num_converged++;
}
} else {
last_average[k] = accel_avg[k];
}
}
}
MAV_RESULT result = MAV_RESULT_ACCEPTED;
// see if we've passed
for (uint8_t k=0; k<num_accels; k++) {
if (!converged[k]) {
result = MAV_RESULT_FAILED;
}
}
// restore orientation
_board_orientation = saved_orientation;
if (result == MAV_RESULT_ACCEPTED) {
hal.console->printf("\nPASSED\n");
for (uint8_t k=0; k<num_accels; k++) {
// remove rotated gravity
new_accel_offset[k] -= rotated_gravity;
_accel_offset[k].set_and_save(new_accel_offset[k]);
_accel_scale[k].save();
_accel_id[k].save();
_accel_id_ok[k] = true;
}
// force trim to zero
AP::ahrs().set_trim(Vector3f(0, 0, 0));
} else {
hal.console->printf("\nFAILED\n");
// restore old values
for (uint8_t k=0; k<num_accels; k++) {
_accel_offset[k] = saved_offsets[k];
_accel_scale[k] = saved_scaling[k];
}
}
// record calibration complete
_calibrating = false;
// throw away any existing samples that may have the wrong
// orientation. We do this by throwing samples away for 0.5s,
// which is enough time for the filters to settle
uint32_t start_ms = AP_HAL::millis();
while (AP_HAL::millis() - start_ms < 500) {
update();
}
// and reset state estimators
AP::ahrs().reset();
// stop flashing leds
AP_Notify::flags.initialising = false;
return result;
}
/*
see if gyro calibration should be performed
*/
AP_InertialSensor::Gyro_Calibration_Timing AP_InertialSensor::gyro_calibration_timing()
{
if (hal.util->was_watchdog_reset()) {
return GYRO_CAL_NEVER;
}
return (Gyro_Calibration_Timing)_gyro_cal_timing.get();
}
#if !HAL_MINIMIZE_FEATURES
/*
update IMU kill mask, used for testing IMU failover
*/
void AP_InertialSensor::kill_imu(uint8_t imu_idx, bool kill_it)
{
if (kill_it) {
uint8_t new_kill_mask = imu_kill_mask | (1U<<imu_idx);
// don't allow the last IMU to be killed
bool all_dead = true;
for (uint8_t i=0; i<MIN(_gyro_count, _accel_count); i++) {
if (use_gyro(i) && use_accel(i) && !(new_kill_mask & (1U<<i))) {
// we have at least one healthy IMU left
all_dead = false;
}
}
if (!all_dead) {
imu_kill_mask = new_kill_mask;
}
} else {
imu_kill_mask &= ~(1U<<imu_idx);
}
}
#endif // HAL_MINIMIZE_FEATURES
namespace AP {
AP_InertialSensor &ins()
{
return *AP_InertialSensor::get_singleton();
}
};