mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
288 lines
7.8 KiB
C++
288 lines
7.8 KiB
C++
/*
|
|
* Copyright (C) 2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "RCOutput_AeroIO.h"
|
|
|
|
#include <utility>
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_HAL/utility/sparse-endian.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
|
|
using namespace Linux;
|
|
|
|
// Device name in @SPIDeviceDriver#_device
|
|
#define DEVICE_NAME "aeroio"
|
|
|
|
// Number of channels
|
|
#define PWM_CHAN_COUNT 16
|
|
|
|
// Set all channels
|
|
#define ALL_CHAN_MASK ((1 << PWM_CHAN_COUNT) - 1)
|
|
|
|
// Default PWM frequency
|
|
#define DEFAULT_FREQ 400
|
|
|
|
// Default PWM duty cycle
|
|
#define DEFAULT_DUTY 0
|
|
|
|
// Set or Clear MSb of BYTE
|
|
#define WADDRESS(x) ((x) | 0x8000)
|
|
#define RADDRESS(x) ((x) & 0x7FFF)
|
|
|
|
// Variables to perform ongoing tests
|
|
#define READ_PREFIX 0x80
|
|
#define WRITE_PREFIX 0x40
|
|
|
|
/**
|
|
* The data_array uses 3 elements to perform the data transaction.
|
|
* The first element is a data byte that provides to FPGA's hardware
|
|
* the transaction type that will be realized inside the SPI module.
|
|
* Where:
|
|
*
|
|
* ╔═════════╦═════════╦══════════╦══════════╦══════════╦══════════╦══════════╦═══════════╗
|
|
* ║ MSB ║ ║ ║ ║ ║ ║ ║ LSB ║
|
|
* ╠═════════╬═════════╬══════════╬══════════╬══════════╬══════════╬══════════╬═══════════╣
|
|
* ║ wr_addr ║ rd_addr ║ reserved ║ reserved ║ reserved ║ reserved ║ reserved ║ reserved ║
|
|
* ╚═════════╩═════════╩══════════╩══════════╩══════════╩══════════╩══════════╩═══════════╝
|
|
*
|
|
* ╔═══════════╦═════════╦═════════╗
|
|
* ║ Register ║ wr_addr ║ rd_addr ║
|
|
* ╠═══════════╬═════════╬═════════╣
|
|
* ║ write ║ 0 ║ X ║
|
|
* ╠═══════════╬═════════╬═════════╣
|
|
* ║ read ║ X ║ 0 ║
|
|
* ╠═══════════╬═════════╬═════════╣
|
|
* ║ status ║ 1 ║ 1 ║
|
|
* ╚═══════════╩═════════╩═════════╝
|
|
*
|
|
* So, to perform a write transaction in the SPI module it's necessary to send. E.g:
|
|
* 0b 01xx xxxx
|
|
* And to a read transaction..
|
|
* 0b 10xx xxxx
|
|
*
|
|
* The PWM frequency is always even and the duty cycle percentage odd. E.g:
|
|
* pwm_01: Address 0x0000 frequency
|
|
* : Address 0x0001 duty cycle
|
|
* pwm_02: Address 0x0002 frequency
|
|
* .
|
|
* .
|
|
* .
|
|
*
|
|
* Eg of allowed values:
|
|
* // PWM channel in 100Hz
|
|
* uint16_t freq = 100;
|
|
*
|
|
* // duty cycle in (1823/65535) that's 2.78% of 100Hz:
|
|
* // the signal will hold high until 278 usec
|
|
* uint16_t duty = 1823;
|
|
*/
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
RCOutput_AeroIO::RCOutput_AeroIO()
|
|
: _freq_buffer(new uint16_t[PWM_CHAN_COUNT])
|
|
, _duty_buffer(new uint16_t[PWM_CHAN_COUNT])
|
|
{
|
|
}
|
|
|
|
RCOutput_AeroIO::~RCOutput_AeroIO()
|
|
{
|
|
delete[] _freq_buffer;
|
|
delete[] _duty_buffer;
|
|
}
|
|
|
|
void RCOutput_AeroIO::init()
|
|
{
|
|
_spi = std::move(hal.spi->get_device(DEVICE_NAME));
|
|
if (!_spi) {
|
|
AP_HAL::panic("Could not initialize AeroIO");
|
|
}
|
|
|
|
// Reset all channels to default value
|
|
cork();
|
|
set_freq(ALL_CHAN_MASK, DEFAULT_FREQ);
|
|
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
|
|
write(i, DEFAULT_DUTY);
|
|
}
|
|
push();
|
|
}
|
|
|
|
void RCOutput_AeroIO::set_freq(uint32_t chmask, uint16_t freq_hz)
|
|
{
|
|
_pending_freq_write_mask |= chmask;
|
|
|
|
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
|
|
if ((chmask >> i) & 0x01) {
|
|
_freq_buffer[i] = freq_hz;
|
|
}
|
|
}
|
|
|
|
if (!_corking) {
|
|
_corking = true;
|
|
push();
|
|
}
|
|
}
|
|
|
|
uint16_t RCOutput_AeroIO::get_freq(uint8_t ch)
|
|
{
|
|
if (ch >= PWM_CHAN_COUNT) {
|
|
return 0;
|
|
}
|
|
return _freq_buffer[ch];
|
|
}
|
|
|
|
void RCOutput_AeroIO::enable_ch(uint8_t ch)
|
|
{
|
|
if (ch >= PWM_CHAN_COUNT) {
|
|
return;
|
|
}
|
|
_pending_duty_write_mask |= (1U << ch);
|
|
_corking = true;
|
|
push();
|
|
}
|
|
|
|
void RCOutput_AeroIO::disable_ch(uint8_t ch)
|
|
{
|
|
if (ch >= PWM_CHAN_COUNT) {
|
|
return;
|
|
}
|
|
_duty_buffer[ch] = 0;
|
|
_pending_duty_write_mask |= (1U << ch);
|
|
_corking = true;
|
|
push();
|
|
}
|
|
|
|
void RCOutput_AeroIO::write(uint8_t ch, uint16_t period_us)
|
|
{
|
|
_pending_duty_write_mask |= (1U << ch);
|
|
_duty_buffer[ch] = period_us;
|
|
|
|
if (!_corking) {
|
|
_corking = true;
|
|
push();
|
|
}
|
|
}
|
|
|
|
void RCOutput_AeroIO::cork()
|
|
{
|
|
_corking = true;
|
|
}
|
|
|
|
void RCOutput_AeroIO::push()
|
|
{
|
|
if (!_corking) {
|
|
return;
|
|
}
|
|
_corking = false;
|
|
|
|
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
|
|
if ((_pending_freq_write_mask >> i) & 0x01) {
|
|
_hw_write(2 * i + 1, _freq_buffer[i]);
|
|
}
|
|
}
|
|
|
|
for (uint8_t i = 0; i < PWM_CHAN_COUNT; i++) {
|
|
if ((_pending_duty_write_mask >> i) & 0x01) {
|
|
_hw_write(2 * i, _usec_to_hw(_freq_buffer[i], _duty_buffer[i]));
|
|
}
|
|
}
|
|
|
|
_pending_freq_write_mask = _pending_duty_write_mask = 0;
|
|
}
|
|
|
|
uint16_t RCOutput_AeroIO::read(uint8_t ch)
|
|
{
|
|
if (ch >= PWM_CHAN_COUNT) {
|
|
return 0;
|
|
}
|
|
#ifndef AEROIO_DEBUG
|
|
return _duty_buffer[ch];
|
|
#else
|
|
return _hw_to_usec(_freq_buffer[ch], _hw_read(2 * ch));
|
|
#endif
|
|
}
|
|
|
|
void RCOutput_AeroIO::read(uint16_t *period_us, uint8_t len)
|
|
{
|
|
for (uint8_t i = 0; i < len; i++) {
|
|
period_us[i] = read(i);
|
|
}
|
|
}
|
|
|
|
bool RCOutput_AeroIO::_hw_write(uint16_t address, uint16_t data)
|
|
{
|
|
struct PACKED {
|
|
uint8_t prefix;
|
|
be16_t addr;
|
|
be16_t val;
|
|
} tx;
|
|
|
|
address = WADDRESS(address);
|
|
|
|
tx.prefix = WRITE_PREFIX;
|
|
tx.addr = htobe16(address);
|
|
tx.val = htobe16(data);
|
|
|
|
return _spi->transfer((uint8_t *)&tx, sizeof(tx), nullptr, 0);
|
|
}
|
|
|
|
uint16_t RCOutput_AeroIO::_hw_read(uint16_t address)
|
|
{
|
|
struct PACKED {
|
|
uint8_t prefix;
|
|
be16_t addr;
|
|
} tx;
|
|
struct PACKED {
|
|
uint8_t ignored[2];
|
|
be16_t val;
|
|
} rx;
|
|
|
|
address = RADDRESS(address);
|
|
|
|
// Write in the SPI buffer the address value
|
|
tx.prefix = WRITE_PREFIX;
|
|
tx.addr = htobe16(address);
|
|
if (!_spi->transfer((uint8_t *)&tx, sizeof(tx), nullptr, 0)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the SPI buffer, sending only the prefix as tx
|
|
* The hardware will fill in 32 bits after the request
|
|
*/
|
|
tx.prefix = READ_PREFIX;
|
|
if (!_spi->transfer((uint8_t *)&tx, 1, (uint8_t *)&rx, sizeof(rx))) {
|
|
return 0;
|
|
}
|
|
|
|
return be16toh(rx.val);
|
|
}
|
|
|
|
uint16_t RCOutput_AeroIO::_usec_to_hw(uint16_t freq, uint16_t usec)
|
|
{
|
|
float f = freq;
|
|
float u = usec;
|
|
return 0xFFFF * u * f / AP_USEC_PER_SEC;
|
|
}
|
|
|
|
uint16_t RCOutput_AeroIO::_hw_to_usec(uint16_t freq, uint16_t hw_val)
|
|
{
|
|
float p = hw_val;
|
|
float f = freq;
|
|
return p * AP_USEC_PER_SEC / (0xFFFF * f);
|
|
}
|