mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 06:38:29 -04:00
2e2c7b50ad
this fixes a bug where a change of home altitude would cause a sudden height demand change. This copes with 3 situations: - flying with AMSL alt demand. Changing home altitude makes for no change - flying with AGL alt demand. Changing home altitude requires update of next_WP_loc - flying with home relative alt demand. Changing home altitude changes demand at end of current navigation leg
460 lines
17 KiB
C++
460 lines
17 KiB
C++
#include "Plane.h"
|
|
|
|
/*
|
|
reset the total loiter angle
|
|
*/
|
|
void Plane::loiter_angle_reset(void)
|
|
{
|
|
loiter.sum_cd = 0;
|
|
loiter.total_cd = 0;
|
|
loiter.reached_target_alt = false;
|
|
loiter.unable_to_acheive_target_alt = false;
|
|
}
|
|
|
|
/*
|
|
update the total angle we have covered in a loiter. Used to support
|
|
commands to do N circles of loiter
|
|
*/
|
|
void Plane::loiter_angle_update(void)
|
|
{
|
|
static const int32_t lap_check_interval_cd = 3*36000;
|
|
|
|
const int32_t target_bearing_cd = nav_controller->target_bearing_cd();
|
|
int32_t loiter_delta_cd;
|
|
const bool reached_target = reached_loiter_target();
|
|
|
|
if (loiter.sum_cd == 0 && !reached_target) {
|
|
// we don't start summing until we are doing the real loiter
|
|
loiter_delta_cd = 0;
|
|
} else if (loiter.sum_cd == 0) {
|
|
// use 1 cd for initial delta
|
|
loiter_delta_cd = 1;
|
|
loiter.start_lap_alt_cm = current_loc.alt;
|
|
loiter.next_sum_lap_cd = lap_check_interval_cd;
|
|
} else {
|
|
loiter_delta_cd = target_bearing_cd - loiter.old_target_bearing_cd;
|
|
}
|
|
|
|
loiter.old_target_bearing_cd = target_bearing_cd;
|
|
loiter_delta_cd = wrap_180_cd(loiter_delta_cd);
|
|
loiter.sum_cd += loiter_delta_cd * loiter.direction;
|
|
|
|
bool reached_target_alt = false;
|
|
|
|
if (reached_target) {
|
|
// once we reach the position target we start checking the
|
|
// altitude target
|
|
bool terrain_status_ok = false;
|
|
#if AP_TERRAIN_AVAILABLE
|
|
/*
|
|
if doing terrain following then we check against terrain
|
|
target, fetch the terrain information
|
|
*/
|
|
float altitude_agl = 0;
|
|
if (target_altitude.terrain_following) {
|
|
if (terrain.status() == AP_Terrain::TerrainStatusOK &&
|
|
terrain.height_above_terrain(altitude_agl, true)) {
|
|
terrain_status_ok = true;
|
|
}
|
|
}
|
|
if (terrain_status_ok &&
|
|
fabsF(altitude_agl - target_altitude.terrain_alt_cm*0.01) < 5) {
|
|
reached_target_alt = true;
|
|
} else
|
|
#endif
|
|
if (!terrain_status_ok && labs(current_loc.alt - target_altitude.amsl_cm) < 500) {
|
|
reached_target_alt = true;
|
|
}
|
|
}
|
|
|
|
if (reached_target_alt) {
|
|
loiter.reached_target_alt = true;
|
|
loiter.unable_to_acheive_target_alt = false;
|
|
loiter.next_sum_lap_cd = loiter.sum_cd + lap_check_interval_cd;
|
|
|
|
} else if (!loiter.reached_target_alt && labs(loiter.sum_cd) >= loiter.next_sum_lap_cd) {
|
|
// check every few laps for scenario where up/downdrafts inhibit you from loitering up/down for too long
|
|
loiter.unable_to_acheive_target_alt = labs(current_loc.alt - loiter.start_lap_alt_cm) < 500;
|
|
loiter.start_lap_alt_cm = current_loc.alt;
|
|
loiter.next_sum_lap_cd += lap_check_interval_cd;
|
|
}
|
|
}
|
|
|
|
//****************************************************************
|
|
// Function that will calculate the desired direction to fly and distance
|
|
//****************************************************************
|
|
void Plane::navigate()
|
|
{
|
|
// do not navigate with corrupt data
|
|
// ---------------------------------
|
|
if (!have_position) {
|
|
return;
|
|
}
|
|
|
|
if (next_WP_loc.lat == 0 && next_WP_loc.lng == 0) {
|
|
return;
|
|
}
|
|
|
|
check_home_alt_change();
|
|
|
|
// waypoint distance from plane
|
|
// ----------------------------
|
|
auto_state.wp_distance = current_loc.get_distance(next_WP_loc);
|
|
auto_state.wp_proportion = current_loc.line_path_proportion(prev_WP_loc, next_WP_loc);
|
|
TECS_controller.set_path_proportion(auto_state.wp_proportion);
|
|
|
|
// update total loiter angle
|
|
loiter_angle_update();
|
|
|
|
// control mode specific updates to navigation demands
|
|
// ---------------------------------------------------
|
|
control_mode->navigate();
|
|
}
|
|
|
|
// method intended for use in calc_airspeed_errors only
|
|
float Plane::mode_auto_target_airspeed_cm()
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (quadplane.landing_with_fixed_wing_spiral_approach() &&
|
|
((vtol_approach_s.approach_stage == Landing_ApproachStage::APPROACH_LINE) ||
|
|
(vtol_approach_s.approach_stage == Landing_ApproachStage::VTOL_LANDING))) {
|
|
const float land_airspeed = TECS_controller.get_land_airspeed();
|
|
if (is_positive(land_airspeed)) {
|
|
return land_airspeed * 100;
|
|
}
|
|
// fallover to normal airspeed
|
|
return aparm.airspeed_cruise_cm;
|
|
}
|
|
if (quadplane.in_vtol_land_approach()) {
|
|
return quadplane.get_land_airspeed() * 100;
|
|
}
|
|
#endif
|
|
|
|
// normal AUTO mode and new_airspeed variable was set by
|
|
// DO_CHANGE_SPEED command while in AUTO mode
|
|
if (new_airspeed_cm > 0) {
|
|
return new_airspeed_cm;
|
|
}
|
|
|
|
// fallover to normal airspeed
|
|
return aparm.airspeed_cruise_cm;
|
|
}
|
|
|
|
void Plane::calc_airspeed_errors()
|
|
{
|
|
// Get the airspeed_estimate, update smoothed airspeed estimate
|
|
// NOTE: we use the airspeed estimate function not direct sensor
|
|
// as TECS may be using synthetic airspeed
|
|
float airspeed_measured = 0.1;
|
|
if (ahrs.airspeed_estimate(airspeed_measured)) {
|
|
smoothed_airspeed = MAX(0.1, smoothed_airspeed * 0.8f + airspeed_measured * 0.2f);
|
|
}
|
|
|
|
// low pass filter speed scaler, with 1Hz cutoff, at 10Hz
|
|
const float speed_scaler = calc_speed_scaler();
|
|
const float cutoff_Hz = 2.0;
|
|
const float dt = 0.1;
|
|
surface_speed_scaler += calc_lowpass_alpha_dt(dt, cutoff_Hz) * (speed_scaler - surface_speed_scaler);
|
|
|
|
|
|
// FBW_B/cruise airspeed target
|
|
if (!failsafe.rc_failsafe && (control_mode == &mode_fbwb || control_mode == &mode_cruise)) {
|
|
if (flight_option_enabled(FlightOptions::CRUISE_TRIM_AIRSPEED)) {
|
|
target_airspeed_cm = aparm.airspeed_cruise_cm;
|
|
} else if (flight_option_enabled(FlightOptions::CRUISE_TRIM_THROTTLE)) {
|
|
float control_min = 0.0f;
|
|
float control_mid = 0.0f;
|
|
const float control_max = channel_throttle->get_range();
|
|
const float control_in = get_throttle_input();
|
|
switch (channel_throttle->get_type()) {
|
|
case RC_Channel::ControlType::ANGLE:
|
|
control_min = -control_max;
|
|
break;
|
|
case RC_Channel::ControlType::RANGE:
|
|
control_mid = channel_throttle->get_control_mid();
|
|
break;
|
|
}
|
|
if (control_in <= control_mid) {
|
|
target_airspeed_cm = linear_interpolate(aparm.airspeed_min * 100, aparm.airspeed_cruise_cm,
|
|
control_in,
|
|
control_min, control_mid);
|
|
} else {
|
|
target_airspeed_cm = linear_interpolate(aparm.airspeed_cruise_cm, aparm.airspeed_max * 100,
|
|
control_in,
|
|
control_mid, control_max);
|
|
}
|
|
} else {
|
|
target_airspeed_cm = ((int32_t)(aparm.airspeed_max - aparm.airspeed_min) *
|
|
get_throttle_input()) + ((int32_t)aparm.airspeed_min * 100);
|
|
}
|
|
#if OFFBOARD_GUIDED == ENABLED
|
|
} else if (control_mode == &mode_guided && guided_state.target_airspeed_cm > 0.0) { // if offbd guided speed change cmd not set, then this section is skipped
|
|
// offboard airspeed demanded
|
|
uint32_t now = AP_HAL::millis();
|
|
float delta = 1e-3f * (now - guided_state.target_airspeed_time_ms);
|
|
guided_state.target_airspeed_time_ms = now;
|
|
float delta_amt = 100 * delta * guided_state.target_airspeed_accel;
|
|
target_airspeed_cm += delta_amt;
|
|
|
|
//target_airspeed_cm recalculated then clamped to between MIN airspeed and MAX airspeed by constrain_float
|
|
if (is_positive(guided_state.target_airspeed_accel)) {
|
|
target_airspeed_cm = constrain_float(MIN(guided_state.target_airspeed_cm, target_airspeed_cm), aparm.airspeed_min *100, aparm.airspeed_max *100);
|
|
} else {
|
|
target_airspeed_cm = constrain_float(MAX(guided_state.target_airspeed_cm, target_airspeed_cm), aparm.airspeed_min *100, aparm.airspeed_max *100);
|
|
}
|
|
|
|
#endif // OFFBOARD_GUIDED == ENABLED
|
|
|
|
#if HAL_SOARING_ENABLED
|
|
} else if (g2.soaring_controller.is_active() && g2.soaring_controller.get_throttle_suppressed()) {
|
|
if (control_mode == &mode_thermal) {
|
|
float arspd = g2.soaring_controller.get_thermalling_target_airspeed();
|
|
|
|
if (arspd > 0) {
|
|
target_airspeed_cm = arspd * 100;
|
|
} else {
|
|
target_airspeed_cm = aparm.airspeed_cruise_cm;
|
|
}
|
|
} else if (control_mode == &mode_auto) {
|
|
float arspd = g2.soaring_controller.get_cruising_target_airspeed();
|
|
|
|
if (arspd > 0) {
|
|
target_airspeed_cm = arspd * 100;
|
|
} else {
|
|
target_airspeed_cm = aparm.airspeed_cruise_cm;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
} else if (flight_stage == AP_FixedWing::FlightStage::LAND) {
|
|
// Landing airspeed target
|
|
target_airspeed_cm = landing.get_target_airspeed_cm();
|
|
} else if (control_mode == &mode_guided && new_airspeed_cm > 0) { //DO_CHANGE_SPEED overrides onboard guided speed commands, user would have re-enter guided mode to revert
|
|
target_airspeed_cm = new_airspeed_cm;
|
|
} else if (control_mode == &mode_auto) {
|
|
target_airspeed_cm = mode_auto_target_airspeed_cm();
|
|
#if HAL_QUADPLANE_ENABLED
|
|
} else if (control_mode == &mode_qrtl && quadplane.in_vtol_land_approach()) {
|
|
target_airspeed_cm = quadplane.get_land_airspeed() * 100;
|
|
#endif
|
|
} else {
|
|
// Normal airspeed target for all other cases
|
|
target_airspeed_cm = aparm.airspeed_cruise_cm;
|
|
}
|
|
|
|
// Set target to current airspeed + ground speed undershoot,
|
|
// but only when this is faster than the target airspeed commanded
|
|
// above.
|
|
if (control_mode->does_auto_throttle() &&
|
|
groundspeed_undershoot_is_valid &&
|
|
control_mode != &mode_circle) {
|
|
float EAS_undershoot = (int32_t)((float)groundspeed_undershoot / ahrs.get_EAS2TAS());
|
|
int32_t min_gnd_target_airspeed = airspeed_measured*100 + EAS_undershoot;
|
|
if (min_gnd_target_airspeed > target_airspeed_cm) {
|
|
target_airspeed_cm = min_gnd_target_airspeed;
|
|
}
|
|
}
|
|
|
|
// when using the special GUIDED mode features for slew control, don't allow airspeed nudging as it doesn't play nicely.
|
|
#if OFFBOARD_GUIDED == ENABLED
|
|
if (control_mode == &mode_guided && !is_zero(guided_state.target_airspeed_cm) && (airspeed_nudge_cm != 0)) {
|
|
airspeed_nudge_cm = 0; //airspeed_nudge_cm forced to zero
|
|
}
|
|
#endif
|
|
|
|
// Bump up the target airspeed based on throttle nudging
|
|
if (control_mode->allows_throttle_nudging() && airspeed_nudge_cm > 0) {
|
|
target_airspeed_cm += airspeed_nudge_cm;
|
|
}
|
|
|
|
// Apply airspeed limit
|
|
target_airspeed_cm = constrain_int32(target_airspeed_cm, aparm.airspeed_min*100, aparm.airspeed_max*100);
|
|
|
|
// use the TECS view of the target airspeed for reporting, to take
|
|
// account of the landing speed
|
|
airspeed_error = TECS_controller.get_target_airspeed() - airspeed_measured;
|
|
}
|
|
|
|
void Plane::calc_gndspeed_undershoot()
|
|
{
|
|
// Use the component of ground speed in the forward direction
|
|
// This prevents flyaway if wind takes plane backwards
|
|
Vector3f velNED;
|
|
if (ahrs.have_inertial_nav() && ahrs.get_velocity_NED(velNED)) {
|
|
const Matrix3f &rotMat = ahrs.get_rotation_body_to_ned();
|
|
Vector2f yawVect = Vector2f(rotMat.a.x,rotMat.b.x);
|
|
if (!yawVect.is_zero()) {
|
|
yawVect.normalize();
|
|
float gndSpdFwd = yawVect * velNED.xy();
|
|
groundspeed_undershoot_is_valid = aparm.min_gndspeed_cm > 0;
|
|
groundspeed_undershoot = groundspeed_undershoot_is_valid ? (aparm.min_gndspeed_cm - gndSpdFwd*100) : 0;
|
|
}
|
|
} else {
|
|
groundspeed_undershoot_is_valid = false;
|
|
groundspeed_undershoot = 0;
|
|
}
|
|
}
|
|
|
|
// method intended to be used by update_loiter
|
|
void Plane::update_loiter_update_nav(uint16_t radius)
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (loiter.start_time_ms != 0 &&
|
|
quadplane.guided_mode_enabled()) {
|
|
if (!auto_state.vtol_loiter) {
|
|
auto_state.vtol_loiter = true;
|
|
// reset loiter start time, so we don't consider the point
|
|
// reached till we get much closer
|
|
loiter.start_time_ms = 0;
|
|
quadplane.guided_start();
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
const bool quadplane_qrtl_switch = (control_mode == &mode_rtl && quadplane.available() && quadplane.rtl_mode == QuadPlane::RTL_MODE::SWITCH_QRTL);
|
|
#else
|
|
const bool quadplane_qrtl_switch = false;
|
|
#endif
|
|
|
|
if ((loiter.start_time_ms == 0 &&
|
|
(control_mode == &mode_auto || control_mode == &mode_guided) &&
|
|
auto_state.crosstrack &&
|
|
current_loc.get_distance(next_WP_loc) > radius*3) ||
|
|
quadplane_qrtl_switch) {
|
|
/*
|
|
if never reached loiter point and using crosstrack and somewhat far away from loiter point
|
|
navigate to it like in auto-mode for normal crosstrack behavior
|
|
|
|
we also use direct waypoint navigation if we are a quadplane
|
|
that is going to be switching to QRTL when it gets within
|
|
RTL_RADIUS
|
|
*/
|
|
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc);
|
|
return;
|
|
}
|
|
nav_controller->update_loiter(next_WP_loc, radius, loiter.direction);
|
|
}
|
|
|
|
void Plane::update_loiter(uint16_t radius)
|
|
{
|
|
if (radius <= 1) {
|
|
// if radius is <=1 then use the general loiter radius. if it's small, use default
|
|
radius = (abs(aparm.loiter_radius) <= 1) ? LOITER_RADIUS_DEFAULT : abs(aparm.loiter_radius);
|
|
if (next_WP_loc.loiter_ccw == 1) {
|
|
loiter.direction = -1;
|
|
} else {
|
|
loiter.direction = (aparm.loiter_radius < 0) ? -1 : 1;
|
|
}
|
|
}
|
|
|
|
// the radius actually being used by the controller is required by other functions
|
|
loiter.radius = (float)radius;
|
|
|
|
update_loiter_update_nav(radius);
|
|
|
|
if (loiter.start_time_ms == 0) {
|
|
if (reached_loiter_target() ||
|
|
auto_state.wp_proportion > 1) {
|
|
// we've reached the target, start the timer
|
|
loiter.start_time_ms = millis();
|
|
if (control_mode->is_guided_mode()) {
|
|
// starting a loiter in GUIDED means we just reached the target point
|
|
gcs().send_mission_item_reached_message(0);
|
|
}
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (quadplane.guided_mode_enabled()) {
|
|
quadplane.guided_start();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
handle speed and height control in FBWB, CRUISE, and optionally, LOITER mode.
|
|
In this mode the elevator is used to change target altitude. The
|
|
throttle is used to change target airspeed or throttle
|
|
*/
|
|
void Plane::update_fbwb_speed_height(void)
|
|
{
|
|
uint32_t now = micros();
|
|
if (now - target_altitude.last_elev_check_us >= 100000) {
|
|
// we don't run this on every loop as it would give too small granularity on quadplanes at 300Hz, and
|
|
// give below 1cm altitude change, which would result in no climb or descent
|
|
float dt = (now - target_altitude.last_elev_check_us) * 1.0e-6;
|
|
dt = constrain_float(dt, 0.1, 0.15);
|
|
|
|
target_altitude.last_elev_check_us = now;
|
|
|
|
float elevator_input = channel_pitch->get_control_in() * (1/4500.0);
|
|
|
|
if (g.flybywire_elev_reverse) {
|
|
elevator_input = -elevator_input;
|
|
}
|
|
|
|
int32_t alt_change_cm = g.flybywire_climb_rate * elevator_input * dt * 100;
|
|
change_target_altitude(alt_change_cm);
|
|
|
|
if (is_zero(elevator_input) && !is_zero(target_altitude.last_elevator_input)) {
|
|
// the user has just released the elevator, lock in
|
|
// the current altitude
|
|
set_target_altitude_current();
|
|
}
|
|
|
|
#if HAL_SOARING_ENABLED
|
|
if (g2.soaring_controller.is_active()) {
|
|
if (g2.soaring_controller.get_throttle_suppressed()) {
|
|
// we're in soaring mode with throttle suppressed
|
|
set_target_altitude_current();
|
|
} else {
|
|
// we're in soaring mode climbing back to altitude. Set target to SOAR_ALT_CUTOFF plus 10m to ensure we positively climb
|
|
// through SOAR_ALT_CUTOFF, thus triggering throttle suppression and return to glide.
|
|
target_altitude.amsl_cm = 100*plane.g2.soaring_controller.get_alt_cutoff() + 1000 + AP::ahrs().get_home().alt;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
target_altitude.last_elevator_input = elevator_input;
|
|
}
|
|
|
|
check_fbwb_altitude();
|
|
|
|
altitude_error_cm = calc_altitude_error_cm();
|
|
|
|
calc_throttle();
|
|
calc_nav_pitch();
|
|
}
|
|
|
|
/*
|
|
calculate the turn angle for the next leg of the mission
|
|
*/
|
|
void Plane::setup_turn_angle(void)
|
|
{
|
|
int32_t next_ground_course_cd = mission.get_next_ground_course_cd(-1);
|
|
if (next_ground_course_cd == -1) {
|
|
// the mission library can't determine a turn angle, assume 90 degrees
|
|
auto_state.next_turn_angle = 90.0f;
|
|
} else {
|
|
// get the heading of the current leg
|
|
int32_t ground_course_cd = prev_WP_loc.get_bearing_to(next_WP_loc);
|
|
|
|
// work out the angle we need to turn through
|
|
auto_state.next_turn_angle = wrap_180_cd(next_ground_course_cd - ground_course_cd) * 0.01f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
see if we have reached our loiter target
|
|
*/
|
|
bool Plane::reached_loiter_target(void)
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (quadplane.in_vtol_auto()) {
|
|
return auto_state.wp_distance < 3;
|
|
}
|
|
#endif
|
|
return nav_controller->reached_loiter_target();
|
|
}
|