ardupilot/ArduCopter/heli.cpp

179 lines
6.9 KiB
C++

#include "Copter.h"
// Traditional helicopter variables and functions
#if FRAME_CONFIG == HELI_FRAME
#ifndef HELI_DYNAMIC_FLIGHT_SPEED_MIN
#define HELI_DYNAMIC_FLIGHT_SPEED_MIN 500 // we are in "dynamic flight" when the speed is over 5m/s for 2 seconds
#endif
// counter to control dynamic flight profile
static int8_t heli_dynamic_flight_counter;
// heli_init - perform any special initialisation required for the tradheli
void Copter::heli_init()
{
// pre-load stab col values as mode is initialized as Stabilize, but stabilize_init() function is not run on start-up.
input_manager.set_use_stab_col(true);
input_manager.set_stab_col_ramp(1.0);
}
// heli_check_dynamic_flight - updates the dynamic_flight flag based on our horizontal velocity
// should be called at 50hz
void Copter::check_dynamic_flight(void)
{
if (!motors->armed() || !motors->rotor_runup_complete() ||
control_mode == LAND || (control_mode==RTL && mode_rtl.state() == RTL_Land) || (control_mode == AUTO && mode_auto.mode() == Auto_Land)) {
heli_dynamic_flight_counter = 0;
heli_flags.dynamic_flight = false;
return;
}
bool moving = false;
// with GPS lock use inertial nav to determine if we are moving
if (position_ok()) {
// get horizontal speed
const float speed = inertial_nav.get_speed_xy();
moving = (speed >= HELI_DYNAMIC_FLIGHT_SPEED_MIN);
}else{
// with no GPS lock base it on throttle and forward lean angle
moving = (motors->get_throttle() > 0.8f || ahrs.pitch_sensor < -1500);
}
if (!moving && rangefinder_state.enabled && rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::RangeFinder_Good) {
// when we are more than 2m from the ground with good
// rangefinder lock consider it to be dynamic flight
moving = (rangefinder.distance_cm_orient(ROTATION_PITCH_270) > 200);
}
if (moving) {
// if moving for 2 seconds, set the dynamic flight flag
if (!heli_flags.dynamic_flight) {
heli_dynamic_flight_counter++;
if (heli_dynamic_flight_counter >= 100) {
heli_flags.dynamic_flight = true;
heli_dynamic_flight_counter = 100;
}
}
}else{
// if not moving for 2 seconds, clear the dynamic flight flag
if (heli_flags.dynamic_flight) {
if (heli_dynamic_flight_counter > 0) {
heli_dynamic_flight_counter--;
}else{
heli_flags.dynamic_flight = false;
}
}
}
}
// update_heli_control_dynamics - pushes several important factors up into AP_MotorsHeli.
// should be run between the rate controller and the servo updates.
void Copter::update_heli_control_dynamics(void)
{
// Use Leaky_I if we are not moving fast
attitude_control->use_leaky_i(!heli_flags.dynamic_flight);
if (ap.land_complete || (is_zero(motors->get_desired_rotor_speed()))){
// if we are landed or there is no rotor power demanded, decrement slew scalar
hover_roll_trim_scalar_slew--;
} else {
// if we are not landed and motor power is demanded, increment slew scalar
hover_roll_trim_scalar_slew++;
}
hover_roll_trim_scalar_slew = constrain_int16(hover_roll_trim_scalar_slew, 0, scheduler.get_loop_rate_hz());
// set hover roll trim scalar, will ramp from 0 to 1 over 1 second after we think helicopter has taken off
attitude_control->set_hover_roll_trim_scalar((float) hover_roll_trim_scalar_slew/(float) scheduler.get_loop_rate_hz());
}
// heli_update_landing_swash - sets swash plate flag so higher minimum is used when landed or landing
// should be called soon after update_land_detector in main code
void Copter::heli_update_landing_swash()
{
switch (control_mode) {
case ACRO:
case STABILIZE:
case DRIFT:
case SPORT:
// manual modes always uses full swash range
motors->set_collective_for_landing(false);
break;
case LAND:
// landing always uses limit swash range
motors->set_collective_for_landing(true);
break;
case RTL:
case SMART_RTL:
if (mode_rtl.state() == RTL_Land) {
motors->set_collective_for_landing(true);
}else{
motors->set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
}
break;
case AUTO:
if (mode_auto.mode() == Auto_Land) {
motors->set_collective_for_landing(true);
}else{
motors->set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
}
break;
default:
// auto and hold use limited swash when landed
motors->set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
break;
}
}
// heli_update_rotor_speed_targets - reads pilot input and passes new rotor speed targets to heli motors object
void Copter::heli_update_rotor_speed_targets()
{
static bool rotor_runup_complete_last = false;
// get rotor control method
uint8_t rsc_control_mode = motors->get_rsc_mode();
float rsc_control_deglitched = 0.0f;
RC_Channel *rc_ptr = rc().find_channel_for_option(RC_Channel::aux_func::MOTOR_INTERLOCK);
if (rc_ptr != nullptr) {
rsc_control_deglitched = rotor_speed_deglitch_filter.apply((float)rc_ptr->get_control_in()) * 0.001f;
}
switch (rsc_control_mode) {
case ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH:
// pass through pilot desired rotor speed if control input is higher than 10, creating a deadband at the bottom
if (motors->get_interlock()) {
motors->set_desired_rotor_speed(rsc_control_deglitched);
} else {
motors->set_desired_rotor_speed(0.0f);
}
break;
case ROTOR_CONTROL_MODE_SPEED_SETPOINT:
case ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT:
case ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT:
// pass setpoint through as desired rotor speed, this is almost pointless as the Setpoint serves no function in this mode
// other than being used to create a crude estimate of rotor speed
if (motors->get_interlock()) {
motors->set_desired_rotor_speed(motors->get_rsc_setpoint());
}else{
motors->set_desired_rotor_speed(0.0f);
}
break;
}
// when rotor_runup_complete changes to true, log event
if (!rotor_runup_complete_last && motors->rotor_runup_complete()){
Log_Write_Event(DATA_ROTOR_RUNUP_COMPLETE);
} else if (rotor_runup_complete_last && !motors->rotor_runup_complete()){
Log_Write_Event(DATA_ROTOR_SPEED_BELOW_CRITICAL);
}
rotor_runup_complete_last = motors->rotor_runup_complete();
}
#endif // FRAME_CONFIG == HELI_FRAME