mirror of https://github.com/ArduPilot/ardupilot
218 lines
7.2 KiB
C++
218 lines
7.2 KiB
C++
/*
|
|
SITL handling
|
|
|
|
This emulates the ADS7844 ADC
|
|
|
|
Andrew Tridgell November 2011
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
|
|
#include "AP_HAL_SITL.h"
|
|
#include "AP_HAL_SITL_Namespace.h"
|
|
#include "HAL_SITL_Class.h"
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_Compass/AP_Compass.h>
|
|
#include <AP_Declination/AP_Declination.h>
|
|
#include <AP_RangeFinder/AP_RangeFinder.h>
|
|
#include <SITL/SITL.h>
|
|
#include "Scheduler.h"
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_ADC/AP_ADC.h>
|
|
#include "SITL_State.h"
|
|
#include <fenv.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
using namespace HALSITL;
|
|
|
|
/*
|
|
convert airspeed in m/s to an airspeed sensor value
|
|
*/
|
|
uint16_t SITL_State::_airspeed_sensor(float airspeed)
|
|
{
|
|
const float airspeed_ratio = 1.9936f;
|
|
const float airspeed_offset = 2013;
|
|
float airspeed_pressure, airspeed_raw;
|
|
|
|
airspeed_pressure = (airspeed*airspeed) / airspeed_ratio;
|
|
airspeed_raw = airspeed_pressure + airspeed_offset;
|
|
if (airspeed_raw/4 > 0xFFFF) {
|
|
return 0xFFFF;
|
|
}
|
|
// add delay
|
|
uint32_t now = hal.scheduler->millis();
|
|
uint32_t best_time_delta_wind = 200; // initialise large time representing buffer entry closest to current time - delay.
|
|
uint8_t best_index_wind = 0; // initialise number representing the index of the entry in buffer closest to delay.
|
|
|
|
// storing data from sensor to buffer
|
|
if (now - last_store_time_wind >= 10) { // store data every 10 ms.
|
|
last_store_time_wind = now;
|
|
if (store_index_wind > wind_buffer_length-1) { // reset buffer index if index greater than size of buffer
|
|
store_index_wind = 0;
|
|
}
|
|
buffer_wind[store_index_wind].data = airspeed_raw; // add data to current index
|
|
buffer_wind[store_index_wind].time = last_store_time_wind; // add time to current index
|
|
store_index_wind = store_index_wind + 1; // increment index
|
|
}
|
|
|
|
// return delayed measurement
|
|
delayed_time_wind = now - _sitl->wind_delay; // get time corresponding to delay
|
|
// find data corresponding to delayed time in buffer
|
|
for (uint8_t i=0; i<=wind_buffer_length-1; i++) {
|
|
time_delta_wind = abs(delayed_time_wind - buffer_wind[i].time); // find difference between delayed time and time stamp in buffer
|
|
// if this difference is smaller than last delta, store this time
|
|
if (time_delta_wind < best_time_delta_wind) {
|
|
best_index_wind = i;
|
|
best_time_delta_wind = time_delta_wind;
|
|
}
|
|
}
|
|
if (best_time_delta_wind < 200) { // only output stored state if < 200 msec retrieval error
|
|
airspeed_raw = buffer_wind[best_index_wind].data;
|
|
}
|
|
|
|
return airspeed_raw/4;
|
|
}
|
|
|
|
|
|
float SITL_State::_gyro_drift(void)
|
|
{
|
|
if (_sitl->drift_speed == 0.0f ||
|
|
_sitl->drift_time == 0.0f) {
|
|
return 0;
|
|
}
|
|
double period = _sitl->drift_time * 2;
|
|
double minutes = fmod(_scheduler->_micros64() / 60.0e6, period);
|
|
if (minutes < period/2) {
|
|
return minutes * ToRad(_sitl->drift_speed);
|
|
}
|
|
return (period - minutes) * ToRad(_sitl->drift_speed);
|
|
|
|
}
|
|
|
|
/*
|
|
emulate an analog rangefinder
|
|
*/
|
|
uint16_t SITL_State::_ground_sonar(void)
|
|
{
|
|
float altitude = height_agl();
|
|
|
|
float voltage = 5.0f;
|
|
if (fabsf(_sitl->state.rollDeg) < 90 &&
|
|
fabsf(_sitl->state.pitchDeg) < 90) {
|
|
// adjust for apparent altitude with roll
|
|
altitude /= cosf(radians(_sitl->state.rollDeg)) * cosf(radians(_sitl->state.pitchDeg));
|
|
|
|
altitude += _sitl->sonar_noise * _rand_float();
|
|
|
|
// Altitude in in m, scaler in meters/volt
|
|
voltage = altitude / _sitl->sonar_scale;
|
|
voltage = constrain_float(voltage, 0, 5.0f);
|
|
|
|
if (_sitl->sonar_glitch >= (_rand_float() + 1.0f)/2.0f) {
|
|
voltage = 5.0f;
|
|
}
|
|
}
|
|
|
|
return 1023*(voltage / 5.0f);
|
|
}
|
|
|
|
/*
|
|
setup the INS input channels with new input
|
|
|
|
Note that this uses roll, pitch and yaw only as inputs. The
|
|
simulator rollrates are instantaneous, whereas we need to use
|
|
average rates to cope with slow update rates.
|
|
|
|
inputs are in degrees
|
|
|
|
phi - roll
|
|
theta - pitch
|
|
psi - true heading
|
|
alpha - angle of attack
|
|
beta - side slip
|
|
phidot - roll rate
|
|
thetadot - pitch rate
|
|
psidot - yaw rate
|
|
v_north - north velocity in local/body frame
|
|
v_east - east velocity in local/body frame
|
|
v_down - down velocity in local/body frame
|
|
A_X_pilot - X accel in body frame
|
|
A_Y_pilot - Y accel in body frame
|
|
A_Z_pilot - Z accel in body frame
|
|
|
|
Note: doubles on high prec. stuff are preserved until the last moment
|
|
|
|
*/
|
|
void SITL_State::_update_ins(float roll, float pitch, float yaw, // Relative to earth
|
|
double rollRate, double pitchRate,double yawRate, // Local to plane
|
|
double xAccel, double yAccel, double zAccel, // Local to plane
|
|
float airspeed, float altitude)
|
|
{
|
|
if (_ins == NULL) {
|
|
// no inertial sensor in this sketch
|
|
return;
|
|
}
|
|
|
|
// minimum noise levels are 2 bits, but averaged over many
|
|
// samples, giving around 0.01 m/s/s
|
|
float accel_noise = 0.01f;
|
|
float accel2_noise = 0.01f;
|
|
// minimum gyro noise is also less than 1 bit
|
|
float gyro_noise = ToRad(0.04f);
|
|
if (_motors_on) {
|
|
// add extra noise when the motors are on
|
|
accel_noise += _sitl->accel_noise;
|
|
accel2_noise += _sitl->accel2_noise;
|
|
gyro_noise += ToRad(_sitl->gyro_noise);
|
|
}
|
|
// get accel bias (add only to first accelerometer)
|
|
Vector3f accel_bias = _sitl->accel_bias.get();
|
|
float xAccel1 = xAccel + accel_noise * _rand_float() + accel_bias.x;
|
|
float yAccel1 = yAccel + accel_noise * _rand_float() + accel_bias.y;
|
|
float zAccel1 = zAccel + accel_noise * _rand_float() + accel_bias.z;
|
|
|
|
float xAccel2 = xAccel + accel2_noise * _rand_float();
|
|
float yAccel2 = yAccel + accel2_noise * _rand_float();
|
|
float zAccel2 = zAccel + accel2_noise * _rand_float();
|
|
|
|
if (fabsf(_sitl->accel_fail) > 1.0e-6f) {
|
|
xAccel1 = _sitl->accel_fail;
|
|
yAccel1 = _sitl->accel_fail;
|
|
zAccel1 = _sitl->accel_fail;
|
|
}
|
|
|
|
Vector3f accel0 = Vector3f(xAccel1, yAccel1, zAccel1) + _ins->get_accel_offsets(0);
|
|
Vector3f accel1 = Vector3f(xAccel2, yAccel2, zAccel2) + _ins->get_accel_offsets(1);
|
|
_ins->set_accel(0, accel0);
|
|
_ins->set_accel(1, accel1);
|
|
|
|
// check noise
|
|
_ins->calc_vibration_and_clipping(0, accel0, 0.0025f);
|
|
_ins->calc_vibration_and_clipping(1, accel1, 0.0025f);
|
|
|
|
float p = radians(rollRate) + _gyro_drift();
|
|
float q = radians(pitchRate) + _gyro_drift();
|
|
float r = radians(yawRate) + _gyro_drift();
|
|
|
|
float p1 = p + gyro_noise * _rand_float();
|
|
float q1 = q + gyro_noise * _rand_float();
|
|
float r1 = r + gyro_noise * _rand_float();
|
|
|
|
float p2 = p + gyro_noise * _rand_float();
|
|
float q2 = q + gyro_noise * _rand_float();
|
|
float r2 = r + gyro_noise * _rand_float();
|
|
|
|
_ins->set_gyro(0, Vector3f(p1, q1, r1) + _ins->get_gyro_offsets(0));
|
|
_ins->set_gyro(1, Vector3f(p2, q2, r2) + _ins->get_gyro_offsets(1));
|
|
|
|
|
|
sonar_pin_value = _ground_sonar();
|
|
float airspeed_simulated = (fabsf(_sitl->aspd_fail) > 1.0e-6f) ? _sitl->aspd_fail : airspeed;
|
|
airspeed_pin_value = _airspeed_sensor(airspeed_simulated + (_sitl->aspd_noise * _rand_float()));
|
|
}
|
|
|
|
#endif
|