ardupilot/ArduCopter/arming_checks.cpp
2015-12-31 12:32:57 +09:00

691 lines
25 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
// performs pre-arm checks. expects to be called at 1hz.
void Copter::update_arming_checks(void)
{
// perform pre-arm checks & display failures every 30 seconds
static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2;
pre_arm_display_counter++;
bool display_fail = false;
if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) {
display_fail = true;
pre_arm_display_counter = 0;
}
if (pre_arm_checks(display_fail)) {
set_pre_arm_check(true);
}
}
// performs pre-arm checks and arming checks
bool Copter::all_arming_checks_passing(bool arming_from_gcs)
{
if (pre_arm_checks(true)) {
set_pre_arm_check(true);
}
return ap.pre_arm_check && arm_checks(true, arming_from_gcs);
}
// perform pre-arm checks and set ap.pre_arm_check flag
// return true if the checks pass successfully
bool Copter::pre_arm_checks(bool display_failure)
{
// exit immediately if already armed
if (motors.armed()) {
return true;
}
// check if motor interlock and Emergency Stop aux switches are used
// at the same time. This cannot be allowed.
if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Interlock/E-Stop Conflict");
}
return false;
}
// check if motor interlock aux switch is in use
// if it is, switch needs to be in disabled position to arm
// otherwise exit immediately. This check to be repeated,
// as state can change at any time.
if (ap.using_interlock && motors.get_interlock()){
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Motor Interlock Enabled");
}
return false;
}
// exit immediately if we've already successfully performed the pre-arm check
if (ap.pre_arm_check) {
// run gps checks because results may change and affect LED colour
// no need to display failures because arm_checks will do that if the pilot tries to arm
pre_arm_gps_checks(false);
return true;
}
// succeed if pre arm checks are disabled
if (g.arming_check == ARMING_CHECK_NONE) {
set_pre_arm_check(true);
set_pre_arm_rc_check(true);
return true;
}
// pre-arm rc checks a prerequisite
pre_arm_rc_checks();
if (!ap.pre_arm_rc_check) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: RC not calibrated");
}
return false;
}
// check Baro
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
// barometer health check
if (!barometer.all_healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Barometer not healthy");
}
return false;
}
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref) {
if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Altitude disparity");
}
return false;
}
}
}
// check Compass
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
//check if compass has calibrated and requires reboot
if (compass.compass_cal_requires_reboot()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Compass calibrated requires reboot");
}
return false;
}
// check the primary compass is healthy
if (!compass.healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not healthy");
}
return false;
}
// check compass learning is on or offsets have been set
if (!compass.configured()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not calibrated");
}
return false;
}
// check for unreasonable compass offsets
Vector3f offsets = compass.get_offsets();
if (offsets.length() > COMPASS_OFFSETS_MAX) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass offsets too high");
}
return false;
}
// check for unreasonable mag field length
float mag_field = compass.get_field().length();
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check mag field");
}
return false;
}
// check all compasses point in roughly same direction
if (!compass.consistent()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent compasses");
}
return false;
}
}
// check GPS
if (!pre_arm_gps_checks(display_failure)) {
return false;
}
#if AC_FENCE == ENABLED
// check fence is initialised
if (!fence.pre_arm_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check fence");
}
return false;
}
#endif
// check INS
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
// check accelerometers have been calibrated
if (!ins.accel_calibrated_ok_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accels not calibrated");
}
return false;
}
// check accels are healthy
if (!ins.get_accel_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accelerometers not healthy");
}
return false;
}
//check if accelerometers have calibrated and require reboot
if (ins.accel_cal_requires_reboot()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot");
}
return false;
}
// check all accelerometers point in roughly same direction
if (ins.get_accel_count() > 1) {
const Vector3f &prime_accel_vec = ins.get_accel();
for(uint8_t i=0; i<ins.get_accel_count(); i++) {
// get next accel vector
const Vector3f &accel_vec = ins.get_accel(i);
Vector3f vec_diff = accel_vec - prime_accel_vec;
float threshold = PREARM_MAX_ACCEL_VECTOR_DIFF;
if (i >= 2) {
/*
* for boards with 3 IMUs we only use the first two
* in the EKF. Allow for larger accel discrepancy
* for IMU3 as it may be running at a different temperature
*/
threshold *= 2;
}
if (vec_diff.length() > threshold) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Accelerometers");
}
return false;
}
}
}
// check gyros are healthy
if (!ins.get_gyro_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Gyros not healthy");
}
return false;
}
// check all gyros are consistent
if (ins.get_gyro_count() > 1) {
for(uint8_t i=0; i<ins.get_gyro_count(); i++) {
// get rotation rate difference between gyro #i and primary gyro
Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Gyros");
}
return false;
}
}
}
// get ekf attitude (if bad, it's usually the gyro biases)
if (!pre_arm_ekf_attitude_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: gyros still settling");
}
return false;
}
}
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
// check board voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if (hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Board Voltage");
}
return false;
}
}
#endif
#endif
// check battery voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Battery");
}
return false;
}
}
// check various parameter values
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
// ensure ch7 and ch8 have different functions
if (check_duplicate_auxsw()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Duplicate Aux Switch Options");
}
return false;
}
// failsafe parameter checks
if (g.failsafe_throttle) {
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
if (channel_throttle->radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check FS_THR_VALUE");
}
return false;
}
}
// lean angle parameter check
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check ANGLE_MAX");
}
return false;
}
// acro balance parameter check
if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: ACRO_BAL_ROLL/PITCH");
}
return false;
}
#if CONFIG_SONAR == ENABLED && OPTFLOW == ENABLED
// check range finder if optflow enabled
if (optflow.enabled() && !sonar.pre_arm_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check range finder");
}
return false;
}
#endif
#if FRAME_CONFIG == HELI_FRAME
// check helicopter parameters
if (!motors.parameter_check(display_failure)) {
return false;
}
#endif // HELI_FRAME
}
// check throttle is above failsafe throttle
// this is near the bottom to allow other failures to be displayed before checking pilot throttle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->radio_in < g.failsafe_throttle_value) {
if (display_failure) {
#if FRAME_CONFIG == HELI_FRAME
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Collective below Failsafe");
#else
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Throttle below Failsafe");
#endif
}
return false;
}
}
return true;
}
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
void Copter::pre_arm_rc_checks()
{
// exit immediately if we've already successfully performed the pre-arm rc check
if (ap.pre_arm_rc_check) {
return;
}
// set rc-checks to success if RC checks are disabled
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) {
set_pre_arm_rc_check(true);
return;
}
// check if radio has been calibrated
if (!channel_throttle->radio_min.configured() && !channel_throttle->radio_max.configured()) {
return;
}
// check channels 1 & 2 have min <= 1300 and max >= 1700
if (channel_roll->radio_min > 1300 || channel_roll->radio_max < 1700 || channel_pitch->radio_min > 1300 || channel_pitch->radio_max < 1700) {
return;
}
// check channels 3 & 4 have min <= 1300 and max >= 1700
if (channel_throttle->radio_min > 1300 || channel_throttle->radio_max < 1700 || channel_yaw->radio_min > 1300 || channel_yaw->radio_max < 1700) {
return;
}
// check channels 1 & 2 have trim >= 1300 and <= 1700
if (channel_roll->radio_trim < 1300 || channel_roll->radio_trim > 1700 || channel_pitch->radio_trim < 1300 || channel_pitch->radio_trim > 1700) {
return;
}
// check channel 4 has trim >= 1300 and <= 1700
if (channel_yaw->radio_trim < 1300 || channel_yaw->radio_trim > 1700) {
return;
}
// if we've gotten this far rc is ok
set_pre_arm_rc_check(true);
}
// performs pre_arm gps related checks and returns true if passed
bool Copter::pre_arm_gps_checks(bool display_failure)
{
// always check if inertial nav has started and is ready
if (!ahrs.healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Nav Checks");
}
return false;
}
// check if flight mode requires GPS
bool gps_required = mode_requires_GPS(control_mode);
#if AC_FENCE == ENABLED
// if circular fence is enabled we need GPS
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) {
gps_required = true;
}
#endif
// return true if GPS is not required
if (!gps_required) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// ensure GPS is ok
if (!position_ok()) {
if (display_failure) {
const char *reason = ahrs.prearm_failure_reason();
if (reason) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: %s", reason);
} else {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Need 3D Fix");
}
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// check EKF compass variance is below failsafe threshold
float vel_variance, pos_variance, hgt_variance, tas_variance;
Vector3f mag_variance;
Vector2f offset;
ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance, offset);
if (mag_variance.length() >= g.fs_ekf_thresh) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF compass variance");
}
return false;
}
// check home and EKF origin are not too far
if (far_from_EKF_origin(ahrs.get_home())) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF-home variance");
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// return true immediately if gps check is disabled
if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// warn about hdop separately - to prevent user confusion with no gps lock
if (gps.get_hdop() > g.gps_hdop_good) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: High GPS HDOP");
}
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// if we got here all must be ok
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// check ekf attitude is acceptable
bool Copter::pre_arm_ekf_attitude_check()
{
// get ekf filter status
nav_filter_status filt_status = inertial_nav.get_filter_status();
return filt_status.flags.attitude;
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
// has side-effect that logging is started
bool Copter::arm_checks(bool display_failure, bool arming_from_gcs)
{
#if LOGGING_ENABLED == ENABLED
// start dataflash
start_logging();
#endif
// check accels and gyro are healthy
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
//check if accelerometers have calibrated and require reboot
if (ins.accel_cal_requires_reboot()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot");
}
return false;
}
if (!ins.get_accel_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Accelerometers not healthy");
}
return false;
}
if (!ins.get_gyro_health_all()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Gyros not healthy");
}
return false;
}
// get ekf attitude (if bad, it's usually the gyro biases)
if (!pre_arm_ekf_attitude_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: gyros still settling");
}
return false;
}
}
// always check if inertial nav has started and is ready
if (!ahrs.healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Waiting for Nav Checks");
}
return false;
}
if (compass.is_calibrating()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Compass calibration running");
}
return false;
}
//check if compass has calibrated and requires reboot
if (compass.compass_cal_requires_reboot()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Compass calibrated requires reboot");
}
return false;
}
// always check if the current mode allows arming
if (!mode_allows_arming(control_mode, arming_from_gcs)) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Mode not armable");
}
return false;
}
// always check gps
if (!pre_arm_gps_checks(display_failure)) {
return false;
}
// if we are using motor interlock switch and it's enabled, fail to arm
if (ap.using_interlock && motors.get_interlock()){
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Interlock Enabled");
return false;
}
// if we are not using Emergency Stop switch option, force Estop false to ensure motors
// can run normally
if (!check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){
set_motor_emergency_stop(false);
// if we are using motor Estop switch, it must not be in Estop position
} else if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop){
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Emergency Stopped");
return false;
}
// succeed if arming checks are disabled
if (g.arming_check == ARMING_CHECK_NONE) {
return true;
}
// baro checks
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
// baro health check
if (!barometer.all_healthy()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Barometer not healthy");
}
return false;
}
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref && (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM)) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Altitude disparity");
}
return false;
}
}
#if AC_FENCE == ENABLED
// check vehicle is within fence
if (!fence.pre_arm_check()) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: check fence");
}
return false;
}
#endif
// check lean angle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > aparm.angle_max) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Leaning");
}
return false;
}
}
// check battery voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Check Battery");
}
return false;
}
}
// check throttle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
// check throttle is not too low - must be above failsafe throttle
if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->radio_in < g.failsafe_throttle_value) {
if (display_failure) {
#if FRAME_CONFIG == HELI_FRAME
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective below Failsafe");
#else
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle below Failsafe");
#endif
}
return false;
}
// check throttle is not too high - skips checks if arming from GCS in Guided
if (!(arming_from_gcs && control_mode == GUIDED)) {
// above top of deadband is too always high
if (channel_throttle->control_in > get_takeoff_trigger_throttle()) {
if (display_failure) {
#if FRAME_CONFIG == HELI_FRAME
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective too high");
#else
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high");
#endif
}
return false;
}
// in manual modes throttle must be at zero
if ((mode_has_manual_throttle(control_mode) || control_mode == DRIFT) && channel_throttle->control_in > 0) {
if (display_failure) {
#if FRAME_CONFIG == HELI_FRAME
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective too high");
#else
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high");
#endif
}
return false;
}
}
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
if (display_failure) {
gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Safety Switch");
}
return false;
}
// if we've gotten this far all is ok
return true;
}