mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 15:38:29 -04:00
262 lines
9.4 KiB
C++
262 lines
9.4 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
24 state EKF based on https://github.com/priseborough/InertialNav
|
|
|
|
Converted from Matlab to C++ by Paul Riseborough
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef AP_NavEKF
|
|
#define AP_NavEKF
|
|
|
|
#include <AP_Math.h>
|
|
#include <AP_AHRS.h>
|
|
#include <AP_InertialSensor.h>
|
|
#include <AP_Baro.h>
|
|
#include <AP_AHRS.h>
|
|
#include <AP_Airspeed.h>
|
|
#include <AP_Compass.h>
|
|
|
|
class NavEKF
|
|
{
|
|
public:
|
|
|
|
// Constructor
|
|
NavEKF(const AP_AHRS &ahrs, AP_Baro &baro);
|
|
|
|
// Initialise the filter states from the AHRS and magnetometer data (if present)
|
|
void InitialiseFilter(void);
|
|
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
void UpdateFilter(void);
|
|
|
|
// fill in latitude, longitude and height of the reference point
|
|
void getRefLLH(struct Location &loc);
|
|
|
|
// return the last calculated NED position relative to the
|
|
// reference point (m). Return false if no position is available
|
|
bool getPosNED(Vector3f &pos);
|
|
|
|
// return the last calculated NED velocity (m/s)
|
|
void getVelNED(Vector3f &vel);
|
|
|
|
// return the last calculated latitude, longitude and height
|
|
bool getLLH(struct Location &loc);
|
|
|
|
// return the Euler roll, pitch and yaw angle in radians
|
|
void getEulerAngles(Vector3f &eulers);
|
|
|
|
// get the transformation matrix from NED to XYD (body) axes
|
|
void getRotationNEDToBody(Matrix3f &mat);
|
|
|
|
// get the transformation matrix from XYZ (body) to NED axes
|
|
void getRotationBodyToNED(Matrix3f &mat);
|
|
|
|
// get the quaternions defining the rotation from NED to XYZ (body) axes
|
|
void getQuaternion(Quaternion &quat);
|
|
|
|
private:
|
|
const AP_AHRS &_ahrs;
|
|
AP_Baro &_baro;
|
|
|
|
void UpdateStrapdownEquationsNED();
|
|
|
|
void CovariancePrediction();
|
|
|
|
void FuseVelPosNED();
|
|
|
|
void FuseMagnetometer();
|
|
|
|
void FuseAirspeed();
|
|
|
|
void zeroRows(float covMat[24][24], uint8_t first, uint8_t last);
|
|
|
|
void zeroCols(float covMat[24][24], uint8_t first, uint8_t last);
|
|
|
|
void quatNorm(float quatOut[4], float quatIn[4]);
|
|
|
|
// store states along with system time stamp in msces
|
|
void StoreStates(void);
|
|
|
|
// recall state vector stored at closest time to the one specified by msec
|
|
void RecallStates(float statesForFusion[24], uint32_t msec);
|
|
|
|
void quat2Tnb(Matrix3f &Tnb, float quat[4]);
|
|
|
|
void quat2Tbn(Matrix3f &Tbn, float quat[4]);
|
|
|
|
void calcEarthRateNED(Vector3f &omega, float latitude);
|
|
|
|
void eul2quat(float quat[4], float eul[3]);
|
|
|
|
void quat2eul(float eul[3],float quat[4]);
|
|
|
|
void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD);
|
|
|
|
void calcposNE(float lat, float lon);
|
|
|
|
void calcllh(float &lat, float &lon, float &hgt);
|
|
|
|
void OnGroundCheck();
|
|
|
|
void CovarianceInit();
|
|
|
|
void readIMUData();
|
|
|
|
void readGpsData();
|
|
|
|
void readHgtData();
|
|
|
|
void readMagData();
|
|
|
|
void readAirSpdData();
|
|
|
|
void SelectVelPosFusion();
|
|
|
|
void SelectHgtFusion();
|
|
|
|
void SelectTasFusion();
|
|
|
|
void SelectMagFusion();
|
|
|
|
bool statesInitialised;
|
|
|
|
float KH[24][24]; // intermediate result used for covariance updates
|
|
float KHP[24][24]; // intermediate result used for covariance updates
|
|
float P[24][24]; // covariance matrix
|
|
float states[24]; // state matrix
|
|
float storedStates[24][50]; // state vectors stored for the last 50 time steps
|
|
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
|
|
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
|
|
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
|
|
Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
|
|
Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
|
|
float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
|
|
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
|
|
Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
|
|
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
|
|
float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
|
|
float dt; // time lapsed since last covariance prediction
|
|
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
|
|
const bool useAirspeed; // boolean true if airspeed data is being used
|
|
const bool useCompass; // boolean true if magnetometer data is being used
|
|
const uint8_t fusionModeGPS; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
|
|
float innovVelPos[6]; // innovation output
|
|
float varInnovVelPos[6]; // innovation variance output
|
|
bool fuseVelData; // this boolean causes the posNE and velNED obs to be fused
|
|
bool fusePosData; // this boolean causes the posNE and velNED obs to be fused
|
|
bool fuseHgtData; // this boolean causes the hgtMea obs to be fused
|
|
float velNED[3]; // North, East, Down velocity obs (m/s)
|
|
float posNE[2]; // North, East position obs (m)
|
|
float hgtMea; // measured height (m)
|
|
float posNED[3]; // North, East Down position (m)
|
|
float statesAtVelTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
|
float statesAtPosTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
|
float statesAtHgtTime[24]; // States at the effective measurement time for the hgtMea measurement
|
|
float innovMag[3]; // innovation output
|
|
float varInnovMag[3]; // innovation variance output
|
|
bool fuseMagData; // boolean true when magnetometer data is to be fused
|
|
Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
|
|
float statesAtMagMeasTime[24]; // filter satates at the effective measurement time
|
|
float innovVtas; // innovation output
|
|
float varInnovVtas; // innovation variance output
|
|
bool fuseVtasData; // boolean true when airspeed data is to be fused
|
|
float VtasMeas; // true airspeed measurement (m/s)
|
|
float statesAtVtasMeasTime[24]; // filter states at the effective measurement time
|
|
float latRef; // WGS-84 latitude of reference point (rad)
|
|
float lonRef; // WGS-84 longitude of reference point (rad)
|
|
float hgtRef; // WGS-84 height of reference point (m)
|
|
Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
|
|
float eulerEst[3]; // Euler angles calculated from filter states
|
|
float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution
|
|
const float covTimeStepMax; // maximum time allowed between covariance predictions
|
|
const float covDelAngMax; // maximum delta angle between covariance predictions
|
|
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
|
|
bool magFuseStep; // boolean set to true when magnetometer fusion steps are being performed
|
|
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
|
|
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
|
|
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
|
|
const uint32_t TASmsecTgt; // target interval between TAS fusion steps
|
|
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
|
|
const uint32_t MAGmsecTgt; // target interval between compass fusion steps
|
|
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
|
|
const uint32_t HGTmsecTgt; // target interval between height measurement fusion steps
|
|
|
|
// Estimated time delays (msec)
|
|
const uint32_t msecVelDelay;
|
|
const uint32_t msecPosDelay;
|
|
const uint32_t msecHgtDelay;
|
|
const uint32_t msecMagDelay;
|
|
const uint32_t msecTasDelay;
|
|
|
|
// IMU input data variables
|
|
float imuIn;
|
|
float tempImu[8];
|
|
uint32_t IMUmsec;
|
|
|
|
// GPS input data variables
|
|
float gpsCourse;
|
|
float gpsGndSpd;
|
|
float gpsLat;
|
|
float gpsLon;
|
|
float gpsHgt;
|
|
bool newDataGps;
|
|
|
|
// Magnetometer input data variables
|
|
float magIn;
|
|
float tempMag[8];
|
|
float tempMagPrev[8];
|
|
uint32_t MAGframe;
|
|
uint32_t MAGtime;
|
|
uint32_t lastMAGtime;
|
|
bool newDataMag;
|
|
|
|
// AHRS input data variables
|
|
float ahrsEul[3];
|
|
|
|
uint32_t velFailTime;
|
|
uint32_t posFailTime;
|
|
uint32_t hgtFailTime;
|
|
|
|
Vector3f prevDelAng;
|
|
Matrix3f prevTnb;
|
|
|
|
struct {
|
|
float q0;
|
|
float q1;
|
|
float q2;
|
|
float q3;
|
|
float magN;
|
|
float magE;
|
|
float magD;
|
|
float magXbias;
|
|
float magYbias;
|
|
float magZbias;
|
|
uint8_t obsIndex;
|
|
Matrix3f DCM;
|
|
Vector3f MagPred;
|
|
float R_MAG;
|
|
float SH_MAG[9];
|
|
} mag_state;
|
|
|
|
uint8_t storeIndex;
|
|
|
|
uint32_t lastIMUusec;
|
|
uint32_t lastFixTime;
|
|
|
|
};
|
|
#endif // AP_NavEKF
|
|
|